

						20
$GCRA(T, \tau)$						
All packets (cells) of flow R are of the same size k						
\Box Arrival time of nth = $A(n)$						
Theoretical arrival just after nth arrival is						
$\theta(n) = \max(A(n), \theta(n-1)) + T$						
\Box If A(n+1)>= $\theta(n)$ - τ then cell is conformant, otherwise not						
Example: GCRA (10,2)						
n 1	2	3	3	4	5	
<i>θ(n-1)</i> ο	11	21	21	31	41	
A <i>(n)</i> 1	11	16	20	29	38	
C C	, c	nc	C	د ر (nc	
\Box Equivalences: R conforms to GCRA (Γ, τ)						
$\Leftrightarrow R$ conforms to staircase arrival curve $\alpha = k u_{T,\tau}$						
\Leftrightarrow R conforms to leaky bucket (r = k/T, b = k(\au + T)/T)						
$\Leftrightarrow \mathcal{R} \text{ conforms to affine arrival curve } \alpha = \gamma_{r,b}$ © J-Y. Le Boudec and P. Thiran						

²⁶ We can express arrival curves with minplus convolution Arrival Curve property means for all $0 \le s \le t$, $x(t) - x(s) \le \alpha(t-s)$ $(\Rightarrow x(t) \le x(s) + \alpha(t-s) \text{ for all } 0 \le s \le t$ $(\Rightarrow x(t) \le \inf_{u} \{ x(u) + \alpha(t-u) \}$ $(\Rightarrow x \le x \otimes \alpha)$

⁴⁰ Some properties of min-plus deconvolution $\Box(f \oslash g) \notin F$ in general $\Box(f \oslash f) \in F$ $\Box(f \oslash f)$ is sub-additive with $(f \oslash f)(0) = 0$ $\Box(f \oslash g) \oslash h = f \oslash (g \otimes h)$ \Box Duality with $\otimes : f \oslash g \le h \Leftrightarrow f \le g \otimes h$

77

Modelling a node with GR

□queue with rate C: R=C, T=0 □priority queue with rate C: R=C, T=I_{max}/C □element with bounded delay d: R = ∞ , T=d □and combine these elements

© J-Y. Le Boudec and P. Thiran

83

□ Output flow y(t) such that $(x \otimes \beta)(t) \ge a(t-D)$ (no buffer underflow) $x(t) \le a(t-D) + B$ (no buffer overflow) or equivalently using deconvolution operator Ø $x(t) \ge (a \oslash \beta)(t-D) = \sup_{u} \{ a(t-D+u) - \beta(u) \}$ $x(t) \le a(t-D) + B$ □ Therefore find smallest D, B s.t. maximal solution of $x(t) \le \{ \delta_0(t) \land a(t+d) \land (a(t-D) + B) \} \land \{(x \otimes \sigma)(t) \}$ verifies $x(t) \ge (a \oslash \beta)(t-D)$

