
© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

1

© J-Y. Le Boudec and P. Thiran

Network calculus

CH-1015 Lausanne
Patrick.Thiran@epfl.ch
http://icawww.epfl.ch

Jean-Yves Le Boudec
Patrick Thiran

LCA-ISC, I&C EPFL

2

© J-Y. Le Boudec and P. Thiran

Contents
0. What is Network Calculus ?

“Network calculus”, J-Y Le Boudec and P. Thiran,
Lecture Notes in Computer Sciences vol. 2050,

Springer Verlag, also available on-line at
http://lcawww.epfl.ch

1. Arrival curves
2. Service curves, backlog, delay

bounds
3. Playback delay for pre-recorded

video

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

3

© J-Y. Le Boudec and P. Thiran

0. What is Network Calculus ?
Deterministic analysis of queuing / flow systems arising
in communication networks
A Min-Plus or Max-Plus algebra filtering theory
Some references

R-L. Cruz « A calculus for network delay, part I and part II »,
IEEE Trans. on Information Theory, pp. 114-141, Jan 1991.
C-S. Chang « Performance guarantees in Communication
Networks », Springer-Verlag, New York, 2000.
J-Y. Le Boudec and P. Thiran « Network calculus», Lecture
Notes in Computer Sciences vol. 2050, Springer Verlag, New
York, 2000.

4

© J-Y. Le Boudec and P. Thiran

The standard Linear Theory

A LTI filter in conventional algebra (R, +, ×)
Input signal = electrical voltage x(t)
System = circuit (filter) with impulse response β(t)
Output = convolution of x(t) and β(t) :
y(t) = ∫ β(t-s) x(s) ds

x(t) y(t)β(t)
+ +

--

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

5

© J-Y. Le Boudec and P. Thiran

Network Calculus uses Min-Plus Linear
Theory

A linear system in min-plus algebra (R, min, +)
Input = arrived traffic in [0,t], x(t)
System = CBR trunk of rate c : β(t) = ct
Output = convolution of x(t) and β(t):
y(t) = infs {β(t-s)+ x(s) }

CBR trunk

bit rate c
x(t) y(t)

6

© J-Y. Le Boudec and P. Thiran

Network Calculus uses Max-Plus Linear
Theory

A linear system in max-plus algebra (R, max, +)
Input = arrival time of nth packet (cell):T(n)
System = CBR trunk of rate c: β −1(n) = 424n/c
Output time = convolution of T(n) and β(n):
T*(n) = maxm {β −1(n-m) + T(m) }

T(n) T*(n)
CBR trunk

bit rate c

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

7

© J-Y. Le Boudec and P. Thiran

Preliminary Concepts
Arrival and Service Curves

Internet integrated services use the concepts of
arrival curve and service curves

8

© J-Y. Le Boudec and P. Thiran

Contents
0. What is Network Calculus ?

1. Arrival curves
Arrival curve: definition

Leaky bucket (affine arrival curve)
GCRA (stair-case arrival curve)

Arrival curve and min-plus convolution
Good arrival curves are sub-additive

Minimal arrival curve and min-plus deconvolution
2. Service curves, backlog, delay bounds
3. Playback delay for pre-recorded video

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

9

© J-Y. Le Boudec and P. Thiran

Cumulative flows
Cumulative flow R(t) ∈ F , t real or integer
F = { x(t) | x(t) is non decreasing and x(t) = 0 for t < 0 }
Examples:

time t

bits

1 2 567 time t

bits

1 55.5 time t

bits

1 2 5 6

R1(t) R2(t) R3(t)

Fluid model (continuous) Packet model
(left continuous)

Discrete-time model

10

© J-Y. Le Boudec and P. Thiran

Example
MPEG files, 25 frames/sec

αα

R R

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

11

© J-Y. Le Boudec and P. Thiran

Cumulative flows

R3(n) = R2(nδ) , n integer, δ = 1

R’2(t) = R3(⎡t/δ⎤) , t real, δ = 1

time

bits

1 55.5 time

bits

1 2 5 6

R2(t) R3(t)

time

bits

1 5

R’2(t)

12

© J-Y. Le Boudec and P. Thiran

Input and output flows

time t

bits

1 2 567 time t

bits

1 55.5 time t

bits

1 2 5 6

R(t) R(t) R(t)

S R R*

R*(t) R*(t)

Virtual delayBacklog

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

13

© J-Y. Le Boudec and P. Thiran

Arrival Curves
Arrival curve α: For any times 0 ≤ s ≤ t, the
cumulative flow R(.) satisfies

R(t) -R(s) ≤ α(t-s)
Example 1: affine arrival curve γr,b

α(t) = γr,b(t) = rt+b for t>0

time

bits

b
slope r R(t)

14

© J-Y. Le Boudec and P. Thiran

Example 2: stair arrival curve
α(t) = kuT,τ (t) = k ⎡(t+τ)/T⎤ if t > 0

with T = period, τ = tolerance
Characterizes flows that are periodic stream of
packets of same size k (cells), which suffer a
variable delay <= τ

time

bits

k

k ⎡(t+τ)/T⎤

T-τ 2T-τ 3T-τ

2k
3k
4k

4T-τ

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

15

© J-Y. Le Boudec and P. Thiran

Example 2: stair arrival curve
α(t) = kuT,τ (t) = k ⎡(t+τ)/T⎤ with T = period, τ = tolerance
Characterizes flows that are periodic stream of packets of
same size k (cells), which suffer a variable delay <= τ

Suppose that R(t) is T-periodic: R(t) – R(u) ≤ k ⎡(t-u)/T⎤
R*(s) ≥ R(s-τ)
R*(t) - R*(s) ≤ R(t) – R(s-τ) ≤ k ⎡(t-s+τ)/T⎤ = kuT,τ (t-s)

S R R*

max τ

16

© J-Y. Le Boudec and P. Thiran

Arrival curve can assumed to be
left continuous

Technical lemma: if α(t) is an arrival curve for R,
then αl (t) = sups<t α(s) is also an arrival curve for R.

time

bits

k

k ⎡(t+τ)/T⎤

2k
3k
4k

time

bits

b
slope r

rt + b

T-τ 2T-τ 3T-τ 4T-τ

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

17

© J-Y. Le Boudec and P. Thiran

Affine and stair arrival curve
R(t) = flow of packets of same size k (cells)
R conforms to α(t) = kuT,τ (t) = k ⎡(t+τ)/T⎤

R conforms to α(t) = γr,b(t) = rt + b with r = k/T
and b = k(τ +T)/T

time

bits

k

k ⎡(t+τ)/T⎤

2k
3k
4k

time

bits

b
slope r

rt + b

T-τ 2T-τ 3T-τ 4T-τ

18

© J-Y. Le Boudec and P. Thiran

Leaky bucket
All packets (cells) of flow R are declared
conformant by a leaky buket controller of rate r
and size b
R conforms to α(t) = γr,b(t) = rt + b

R(t) rt + b

r

x(t)

b
R(t) slope r

t1 55.5

R(t)

b
x(t)

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

19

© J-Y. Le Boudec and P. Thiran

Leaky bucket
All packets (cells) of flow R are declared conformant by a
leaky buket controller of rate r and size b
R conforms to α(t) = γr,b(t) = rt + b
(⇒) (R(t)-x(t)) – (R(s)-x(s)) ≤ r(t-s)
⇒ x(t) ≥ R(t) – R(s) + x(s) - r(t-s) ≥ R(t) – R(s) - r(t-s)
⇒ b ≥ x(t) ≥ R(t) – R(s) - r(t-s)

(⇐) R(t) – R(s) - r(t-s) ≤ b for any s < t.
Let s = beginning of busy period at time t: x(s) = 0.
During]s,t], the queue is never empty, so
x(t) = x(s) + R(t) – R(s) - r(t-s)
⇒ x(t) ≤ b

r

x(t)

b

R(t)

20

© J-Y. Le Boudec and P. Thiran

GCRA (T,τ)
All packets (cells) of flow R are of the same size k
Arrival time of nth = A(n)
Theoretical arrival just after nth arrival is

θ(n) = max(A(n),θ(n-1)) + T
If A(n+1) >= θ(n) – τ then cell is conformant, otherwise not

Example: GCRA (10,2)
n 1 2 3 3 4 5
θ(n-1) 0 11 21 21 31 41
A(n) 1 11 16 20 29 38

c c nc c c nc
Equivalences: R conforms to GCRA (T,τ)
R conforms to staircase arrival curve α = kuT,τ

R conforms to leaky bucket (r = k/T, b = k(τ+T)/T)
R conforms to affine arrival curve α= γr,b

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

21

© J-Y. Le Boudec and P. Thiran

Combining leaky buckets

time

bits

b

M

slope r

slope m
time

bits

b
slope r

standard arrival curve in the Internet (∧ = min)
α(u) = min (pu+M, ru+b) = (pu+M) ∧(ru+b)

22

© J-Y. Le Boudec and P. Thiran

Sub-additivity and arrival curves
If α is an arrival curve for flow R, so is α
α(t) ≤ α(t)
What is α(t) ?
The answer uses min-plus convolution and sub-additivity

T

k

α(t)

2T 3T

2k
3k
4k

4T T

k

α(t)

2T 3T

2k
3k
4k

4T

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

23

© J-Y. Le Boudec and P. Thiran

Min-plus convolution ⊗
Definition

(f ⊗ g) (t) = infu { f(t-u) + g(u) }

t

f(t)

g(t)

(f ⊗ g)(t)

24

© J-Y. Le Boudec and P. Thiran

Example 1
(f ⊗ g) (t) = ?

t
T

f(t)

R
K

s

f(s)

t

g(t)

r
t

g(t-s)
(f⊗g)(t)

tT

(f⊗g)(t)

r
K

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

25

© J-Y. Le Boudec and P. Thiran

Example 2

(f ⊗ f) (t) = ?
tT

f(t)

R
K’

s

f(s)

t

f(t-s)(f⊗f)(t)

t2T

R

2K’

(f⊗f)(t)

26

© J-Y. Le Boudec and P. Thiran

We can express arrival curves with min-
plus convolution

Arrival Curve property means for all 0 ≤ s ≤ t,
x(t) -x(s) ≤ α(t-s)

<-> x(t) ≤ x(s) + α(t-s) for all 0 ≤ s ≤ t
<-> x(t) ≤ infu { x(u) + α(t-u) }
<-> x ≤ x ⊗ α

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

27

© J-Y. Le Boudec and P. Thiran

Star-shaped, concave, convex functions

f∈ F
f is concave ∀ 0 ≤ u ≤ 1, f (ux + (1-u)y) ≥ uf(x) +
(1-u)f(y)
f is convex -f is concave
f is star-shaped f(t)/t ≤ f(s)/s ∀ s ≤ t
f is concave ⇒ f is star-shaped
f is star-shaped ⇒ f is concave

28

© J-Y. Le Boudec and P. Thiran

Sub-additive function

f is sub-additive f (t) + f(s) ≥ f(t+s)
f is concave with f(0) = 0 ⇒ f is star-shaped
f is sub-additive ⇒ f is star-shaped
f,g are sub-additive and pass through the origin
(f(0) = g(0) = 0) ⇒ f ⊗ g is sub-additive

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

29

© J-Y. Le Boudec and P. Thiran

Examples

γr,b is concave
time

bits

b
slope r

γr,b(t)

time

bits

k

uT,τ (t)

2k
3k
4k

uT,τ is star-shaped ?
sub-additive ?

T-τ 2T-τ 3T-τ 4T-τ

30

© J-Y. Le Boudec and P. Thiran

Examples

δT is convex
time

bits

delay T

δT(t)

bits

βR,T is convex

time

bits

latency T

βR,T(t)

Slope (rate) R

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

31

© J-Y. Le Boudec and P. Thiran

Examples

time

bits

T

βR,T(t)+K’

R

K’

time

bits

T

βR,T(t)+K’’

R

K’’

βR,T + K’ is star-shaped ?
Sub-additive ?

βR,T + K’’ is star-shaped ?
Sub-additive ?

32

© J-Y. Le Boudec and P. Thiran

Some properties of min-plus convolution
(f ⊗ g) ∈ F
⊗ is associative
⊗ is commutative
Neutral element: δ0 : f ⊗ δ0 = f

(δ0 (t) = 0 for t = 0 and δ0 (t) = ∞ for t > 0)
⊗ is distributive with respect to ∧
⊗ is isotone: f ≤ f’ and g ≤ g’ ⇒ f ⊗ g ≤ f’ ⊗ g’
Functions passing through the origin (f(0) = g(0) = 0):

f ⊗ g ≤ f ∧ g
Star-shaped (concave) functions passing through the origin:

f ⊗ g = f ∧ g
Convex piecewise linear functions: f ⊗ g is the convex
piecewise linear function obtained by putting end-to-end all
linear pieces of f and g, sorted by increasing slopes

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

33

© J-Y. Le Boudec and P. Thiran

Example: rate latency function

δT is convex
(delay function)

βR,T is convex
(rate-latency function)

latency T

βR,T(t)

Slope (rate) R
=

delay T

δT(t)

⊗

λR(t)=Rt

Rate R

λR is convex
(delay function)

34

© J-Y. Le Boudec and P. Thiran

Example 1 (using rules)

t
T

f(t)

R
K f = K + βR,T

= K + δT ⊗ λR

f⊗g = (K + δT ⊗ λR) ⊗ λr
= K + ((δT ⊗ λR) ⊗ λr)
= K + (δT ⊗ (λR ⊗ λr))
= K + (δT ⊗ (λR ∧ λr))
= K + (δT ⊗ λr)
= K + βr,T

t

g(t)

r

g = λr concave
with g(0) = 0

t
T

(f⊗g)(t)

r
K

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

35

© J-Y. Le Boudec and P. Thiran

Sub-additive closure

f = inf {δ0 ,f,f ⊗ f, f ⊗ f ⊗ f,… }
f is sub-additive with f(0) = 0
f is sub-additive with f(0) = 0 f =f f = f ⊗ f
f ≤ g ⇒ f ≤ g
f ∧ g = f ⊗g
Functions passing through the origin (f(0) = g(0) = 0):

f ⊗ g = f ⊗ g

36

© J-Y. Le Boudec and P. Thiran

Examples

time

bits

T

βR,T(t)+K’
R

K’

time

bits

T

βR,T(t)+K’’
R

K’’

2T

2K’

(βR,T(t)+K’)(2)

(βR,T(t)+K’)(2)

2T

βR,T(t)+K’’

βR,T(t)+K’

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

37

© J-Y. Le Boudec and P. Thiran

Sub-additivity and arrival curves

bits

k

α(t)

T 2T 3T

2k
3k
4k

4T T 2T 3T 4T

α(t)

What is α(t) ?
α can be replaced by its sub-additive closure α.
From now on: we will always take sub-additive arrival

curves passing through the origin.

38

© J-Y. Le Boudec and P. Thiran

Minimal arrival curve
If the only available information on a flow is obtained

from measurements, i.e if we only know R, how can we
compute its minimal arrival curve α ?

The answer uses min-plus deconvolution

R

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

39

© J-Y. Le Boudec and P. Thiran

Min-plus deconvolution Ø
Definition

(f Ø g) (t) = supu { f(t+u) - g(u) }

t

f(t)

g(t)

(f ∅ g)(t)

40

© J-Y. Le Boudec and P. Thiran

Some properties of min-plus deconvolution
(f ∅ g) ∉ F in general
(f ∅ f) ∈ F
(f ∅ f) is sub-additive with (f ∅ f) (0) = 0
(f ∅ g) ∅ h = f ∅ (g ⊗ h)
Duality with ⊗ : f ∅g ≤ h ⇔ f ≤ g ⊗ h

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

41

© J-Y. Le Boudec and P. Thiran

The minimal arrival curve of flow R is α = R Ø R .
Proof:

It is an arrival curve because
R(t) – R(s) = R((t-s)+s) - R(s)

≤ supu { R((t-s)+u) - R(u) } = (R Ø R) (t-s)
If α’ is another arrival curve for flow R, then R ≤ R ⊗ α’
⇔ R Ø R ≤ α’ so that α ≤ α’ .

Minimal arrival curve

42

© J-Y. Le Boudec and P. Thiran

Example
MPEG files, 25 frames/sec

αα

R R

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

43

© J-Y. Le Boudec and P. Thiran

Two key Concepts
Arrival and Service Curves

Internet integrated services use the concepts of
arrival curve and service curves

44

© J-Y. Le Boudec and P. Thiran

Contents
0. What is Network Calculus

1. Arrival curves
2. Service curves, backlog, delay bounds

Minimal vs strict service curves
Backlog and delay bounds

Concatenation
Packetizer

Adaptive service curves
Guaranteed Rate Servers

3. Playback delay for pre-recorded video

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

45

© J-Y. Le Boudec and P. Thiran

Minimal service Curve
System S offers a (minimal) service curve β to a flow
iff for all t there exists some s such that

y(t) - x(s) ≥ β (t-s)

S x y

t

y(t)

s

x(s)

x yβ (t)

46

© J-Y. Le Boudec and P. Thiran

Strict service Curve
Minimal service curve β : for all t there exists some s such that
y(t) - x(s) ≥ β (t-s)
Strict service curve β : during any backlogged period [s,t], y(t) -
y(s) ≥ β (t-s)

S x y

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

47

© J-Y. Le Boudec and P. Thiran

The constant rate server has (strict)
service curve β(t)=ct

Proof: take s = beginning of busy period:
y(t) – y(s) = c (t-s) and y(s) = x(s)

-> y(t) – x(s) = c (t-s)

buffer

s t 0

ct

t

48

© J-Y. Le Boudec and P. Thiran

The guaranteed-delay node has
(minimal) service curve δT

seconds

≤ T

x
y

0 T

δT (t)

Function δT

t

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

49

© J-Y. Le Boudec and P. Thiran

We can express service curves with min-
plus convolution

Service Curve guarantee means there exists some
0 ≤ s ≤ t : y(t) - x(s) ≥ β (t-s)

y(t) ≥ x(s) + β(t-s) for some 0 ≤ s ≤ t
y(t) ≥ infu { x(u) + β(t-u) }
y ≥ x ⊗ β

50

© J-Y. Le Boudec and P. Thiran

Backlog and (virtual) delay
Flow x is constrained by arrival curve α
System S offers a (minimal) service curve β to this flow
Backlog at time t is x(t) – y(t)
Virtual delay d(t) at time t is d(t) = inf{ δ ≥ 0 | x(t) ≤ y(t + δ) }

S x y

time t1 2 567

x(t)
Y(t)

time t

bits

1 55.5

y(t)

bits

x(t)

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

51

© J-Y. Le Boudec and P. Thiran

Non preemptive priority node –
High priority traffic

Pick any t, let s be the beginning of the busy period before t for
HP traffic. With possible delay due to a LP packet that arrived
just before s, of max size lmax

yH(t) – yH(s) ≥ C(t-s) – lmax and yH(s) = xH(s)
⇒ yH(t) – xH(s) ≥ C(t-s) – lmax

Now, yH(t) – xH(s) = yH(t) – yH(s) ≥ 0
⇒ yH(t) – xH(s) ≥ [C(t-s) – lmax]+

Service curve for HP traffic is βC,lmax /C

xH(t) Rate C yH(t)

xL(t) yL(t)

52

© J-Y. Le Boudec and P. Thiran

Non preemptive priority node
Low priority traffic

Assume αH, is an arrival curve for HP traffic.
Let s’ be the beginning of the busy period of the server before t.
yL(t) – yL(s’) = C(t-s’) – (yH(t) – yH(s’))
and yH(s’) = xH(s’) and yL(s’) = xL(s’)
⇒ yL(t) – xL(s’) = yL(t) – yL(s’) = C(t-s’) – (yH(t) – xH(s’))

≥ C(t-s’) – (xH(t) – xH(s’)) ≥ C(t-s’) – αH,(t - s’)
Now, yL(t) – xL(s’) = yL(t) – yL(s’) ≥ 0
⇒ yL(t) – xL(s’) ≥ [C(t-s’) – αH(t - s’)]+

Service curve for LP traffic is S(t) = [Ct – αH(t)]+

If αH = γr,b then S = βC-r.b/(C-r)

xH(t) Rate C yH(t)

xL(t) yL(t)

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

53

© J-Y. Le Boudec and P. Thiran

The standard model for an
Internet router

rate-latency service curve βR,T

T

bits

R

seconds

54

© J-Y. Le Boudec and P. Thiran

Three fundamental bounds
If flow has arrival curve α and node offers service curve β then

backlog ≤ sup (α(s) -β(s)) = (α Ø β)(0) = v(α, β)
delay ≤ inf { s ≥ 0 : (α Ø β)(-s) ≤ 0 } = h(α, β)
Output flow y is constrained by arrival curve α’ = α Ø β

α

β

h(α,β)

v(α,β)

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

55

© J-Y. Le Boudec and P. Thiran

Tight Bound on backlog
Flow x is constrained by arrival curve α
System S offers a (minimal) service curve β to this flow
Backlog at time t is x(t) – y(t)
Backlog ≤ sup (α(s) -β(s)) = (α Ø β)(0) = v(α, β)

α

βv(α,β)

56

© J-Y. Le Boudec and P. Thiran

Tight Bound on delay
Flow x is constrained by arrival curve α
System S offers a (minimal) service curve β to this flow
Virtual delay d(t) at time t is d(t) = inf{ δ ≥ 0 | x(t) ≤ y(t + δ) }
delay ≤ inf { s ≥ 0 : (α Ø β)(-s) ≤ 0 } = h(α, β)

α

β

h(α,β)

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

57

© J-Y. Le Boudec and P. Thiran

Arrival Curve of output flow
Flow x is constrained by arrival curve α
System S offers a (minimal) service curve β to this flow
Output flow y is constrained by arrival curve α’ = α Ø β

S x y

Proof: x(t) ≤ y(t) and y(s) ≥ infu (x(u) - β (s-u))
⇒ y(t) - y(s) ≤ x(t) – infu (x(u) - β (s-u))

= supu {x(t) – x(u) - β (s-u) }
≤ supu { α(t-u) - β (s-u) }
= supv { α(t-s+v) - β (v) }
= (α Ø β)(t-s)

58

© J-Y. Le Boudec and P. Thiran

The composition theorem
Theorem: the concatenation of two network elements each
offering service curve βi offers the service curve β1 ⊗ β2

β1 ⊗ β2

β2β1

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

59

© J-Y. Le Boudec and P. Thiran

R1 R2

T2

⊗ =

T1

Example

tandem of routers

R1

T2 T1+T2

60

© J-Y. Le Boudec and P. Thiran

Pay Bursts Only Once

β2

D1 D2

α β1

D

α β1⊗ β2

D ≤ b /R + T1 + T2

end to end delay bound is less

D ≤ b /R + T1 + T2

end to end delay bound is less

D1 +D2 ≤ (2b + rT1)/ R + T1 + T2D1 +D2 ≤ (2b + rT1)/ R + T1 + T2

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

61

© J-Y. Le Boudec and P. Thiran

Greedy shaper

Definition of Greedy shaper
forces output to be constrained by arrival curve σ

x(t) - x(s) ≤ σ(t - s)
stores data in a buffer if needed
Hence the shaper maximises x(t) such that

x(t) ≤ R(t)
x(t) ≤ (x⊗ σ) (t)

R(t)

σ

Shaper

x(t)

62

© J-Y. Le Boudec and P. Thiran

Output of a Greedy shaper

R(t)

σ

Shaper

x(t)

If σ is sub-additive and σ(0) = 0, x(t) = (R⊗ σ) (t)
Proof:

x = R ⊗ σ is a solution because
x = R ⊗ σ ≤ R since σ(0) = 0
x = R ⊗ σ = R ⊗ (σ ⊗ σ) = (R ⊗ σ) ⊗ σ = x ⊗ σ

If x’ is another solution then x’ ≤ R and x ’ ≤ x’ ⊗ σ .
Combining the two and using isotonicity of ⊗ :

x ’ ≤ x’ ⊗ σ ≤ R ⊗ σ = x

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

63

© J-Y. Le Boudec and P. Thiran

Greedy shaper = linear min-plus filter
Standard convolution in (R, x, +) (LTI filter)

y(t) = (σ ∗ x)(t) = ∫ σ(t-u) x(u) du

Min-plus convolution in (R, +, ∧) is linear (∧ = min)
y(t) = (σ ⊗ x) (t) = infu { σ(t-u) + x(u) }

x(t) y(t)σ(t)
+ +

--

shaper σ
x y

64

© J-Y. Le Boudec and P. Thiran

The service curve of a Greedy shaper
is its shaping curve

x(t)

σ

Shaper

y(t)

If σ is sub-additive and σ(0) = 0, y(t) = (x⊗ σ) (t).
The service curve of a shaper is thus σ.

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

65

© J-Y. Le Boudec and P. Thiran

Shaping cannot be undone by shaping

R(t)

σ

Shaper

x(t)

Suppose that R(t) is constrained by arrival curve α : R ≤ R ⊗ α .
Then x = R ⊗ σ ≤ (R ⊗ α) ⊗ σ = R ⊗ (α ⊗ σ) ≤ R ⊗ α since σ(0) = 0.
Therefore shaping keeps arrival constraints.
In fact, the output flow has α ⊗ σ as arrival curve

66

© J-Y. Le Boudec and P. Thiran

Re-shaping is for free

Suppose that R(t) is constrained by arrival curve α
Backlog for first system = v(α, β1 ⊗ β2) = (α Ø(β1 ⊗ β 2))(0)
Backlog for second system with intermediate shaper =
v(α, β1 ⊗σ ⊗β2) = (α Ø(β1 ⊗ σ ⊗β2))(0) = (α Ø(σ ⊗ β1 ⊗β2))(0)

= ((α Ø σ) Ø (β1 ⊗β2))(0)
Since α ≤ σ and α is sub-additive with α(0) = 0,
(αØσ)(t) = supu{α(t+u) - σ(u)} ≤ supu{α(t+u) - α(u)} =(αØα)(t) = α(t)
Therefore v(α, β1 ⊗σ ⊗β2) = (α Ø(β1 ⊗ β 2))(0) = v(α, β1 ⊗ β2)
Same reasoning for delays: h(α, β1 ⊗σ ⊗β2) = h(α, β1 ⊗ β2)

α
β1

β2
β1 ⊗ β2

end-to-end
service curve

Shaper

σ ≥ αα
β1 β2 β1 ⊗σ ⊗β2

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

67

© J-Y. Le Boudec and P. Thiran

Handling variable size packets
The shaper presented before is for constant size
packets or ideal fluid systems
Real life systems are modelled by adding a packetizer
transforms fluid input into packets of size l1, l2, l3, …

Packetizer adds some distortion

c

l1l2l3 l1l2l3

(PL)

constant rate server
=

greedy shaper σ(t)=ct
+ packetizer

R(t)
R’(t)

R*(t)

T1 T2 T3

l1 + l2 + l3

l1 + l2
l1

68

© J-Y. Le Boudec and P. Thiran

Goal of Service Curve and GR node
definitions

define an abstract node model
independent of a specific type of scheduler
applies to real routers, which are not a single
scheduler, but a complex interconnection of delay and
scheduling elements
applies to nodes that are not work-conserving

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

69

© J-Y. Le Boudec and P. Thiran

Adaptive service Curve
Minimal service curve β : for all t there exists some s
such that y(t) ≥ β (t-s) + x(s)
Strict service curve β : during any backlogged period
[s,t], y(t) ≥ β (t-s) + y(s)
Adaptive service curve β : for all t and all s ≤t,

y(t) ≥ { β (t-s) + y(s) } ∧ infs ≤= u ≤= t {β(t-u) + x(u)}
(in fact: adaptive guarantee (β’ , β)

y(t) ≥ { β’ (t-s) + y(s) } ∧ infs ≤= u ≤= t {β(t-u) + x(u)}
Strict ⇒ Adaptive ⇒ Minimal

70

© J-Y. Le Boudec and P. Thiran

The constant rate server has (adaptive)
service curve β(t)=ct

Proof: ct is a minimal service curve

buffer

s t 0

ct

t

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

71

© J-Y. Le Boudec and P. Thiran

The guaranteed-delay node has
(adaptive) service curve δT

seconds

≤ T

x
y

0 T

δT (t)

t

Proof: Pick any s ≤ t.
If t-s ≤ T then trivially y(t) ≥ δT(t-s) + y(s)
If t-s > T then infs ≤= u ≤= t {δT(t-u) + x(u)} = x(t-T) ≤ y(t)

72

© J-Y. Le Boudec and P. Thiran

The adaptive service curve of a
Greedy shaper is (σ Ø σ, σ)

x(t)

σ

Shaper

y(t)

Max-plus deconvolution:(f Ø g) (t) = infu { f(t+u) - g(u) }
y(t) = (x⊗ σ) (t) = inf0 ≤= u ≤= t {σ(t-u) + x(u)}

= inf0 ≤= u ≤ s {σ(t-u) + x(u)} ∧ infs ≤= u ≤= t {σ(t-u) + x(u)}
≥ inf0 ≤= u ≤ s {σ(s-u) + inf v {σ(t-s+v) - σ(v) } + x(u)}

∧ infs ≤= u ≤= t {σ(t-u) + x(u)}
≥ { inf0 ≤= u ≤ s {σ(s-u) + x(u)} + (σ Øσ)(t-s) }

∧ infs ≤= u ≤= t {σ(t-u) + x(u)}
= { y(t) + (σ Øσ)(t-s) } ∧ infs ≤= u ≤= t {σ(t-u) + x(u)}

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

73

© J-Y. Le Boudec and P. Thiran

Guaranteed Rate node
An alternative definition to service curve for
FIFO

for rate-latency service curves only
Definition (Goyal, Lam, Vin; Chang):
a node is GR(r,e) if

D(n) ≤ F(n) + e
F(n) = max{A(n), F(n-1)} + l(n)/r

D(n) : departure time for packet n
A(n) : arrival time
F(n) : virtual finish time, F(0) = 0
l(n) : length in bits for packet n

74

© J-Y. Le Boudec and P. Thiran

F(n-1) D(n-1)A(n)

F(n) D(n)

l(n)/r

F(n-1) D(n-1) A(n)

F(n) D(n)

l(n)/r

F(n) = max{A(n), F(n-1)} A+ l(n)/rF(n) = max{A(n), F(n-1)} A+ l(n)/r

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

75

© J-Y. Le Boudec and P. Thiran

GR is equivalent to rate-latency
service curve -- for FIFO per flow

GR(r,e) is equivalent to
D(n) ≤ maxk≤n[A(k) + (l(k) + … + l(n))/r] + e

max-plus analog to service curve
Theorem (equivalence for FIFO per flow nodes):

a GR node is a service curve element with rate-latency service
curve (r,e) followed by a packetizer
conversely, consider a node which is FIFO per flow and
serves entire packets. If it has the rate-latency service
curve (R,T) then it is GR(R,T).

FIFO per flow is true in IntServ context

76

© J-Y. Le Boudec and P. Thiran

Properties of GR nodes
(FIFO per flow or not)

delay bound = h(α, β)
Dmax= e + sup[α(t)/r-t]

for FIFO per flow nodes = delay at service curve element
(packetizer does not add per-packet delay)
backlog bound = v(α, β) + lmax

Bmax= sup[α(t)-R(t-T)+] + lmax

e

rα(t)

Dmax= e + sup(α(t)/r-t)

time

bits

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

77

© J-Y. Le Boudec and P. Thiran

Modelling a node with GR
queue with rate C: R=C, T=0
priority queue with rate C: R=C, T=lmax/C

element with bounded delay d: R = ∞, T=d
and combine these elements

78

© J-Y. Le Boudec and P. Thiran

Contents
0. What is Network Calculus ?

1. Arrival curves
2. Service curves, backlog, delay bounds
3. Playback delay for pre-recorded video

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

79

© J-Y. Le Boudec and P. Thiran

Network delivery of Pre-
recorded video

Le Boudec and Verscheure ToN 2000, Thiran, Le Boudec and Worm, Infocom
2001
Network + end-station offers a service curve β to flow
x(t) (intserv or diffserv + real time model of end-
station)
Smoother delivers a flow x(t) conforming to an arrival
curve σ. Can look-ahead on the server (max d time units)
Video stream is stored in the client buffer B and read
after a playback delay D.

β a(t-D)x(t) y(t)

NetworkSmoother

ß(t)
σ

Video
display

B

Video
server

a(t+d)

80

© J-Y. Le Boudec and P. Thiran

Network delivery of Pre-
recorded video

What are the minimal values of D and B, given d, σ
and β ?
What is the scheduling (smoothing) strategy at the
sender side that achieves these minimal values ?
Is this optimal smoothing strategy unique ?
Does a large look-ahead delay d help in reducing D
and B ?

β a(t-D)x(t) y(t)

NetworkSmoother

ß(t)
σ

Video
display

B

Video
server

a(t+d)

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

81

© J-Y. Le Boudec and P. Thiran

Putting the Problem into Equations

Smoothed flow x(t) such that
x(t) ≤ δ0(t) (i.e, x(t) = 0 if t ≤0)
x(t) ≤ a(t+d) (look-ahead up to d time units)
x(t) ≤ (x⊗ σ) (t) (smoothing)

Output flow y(t) such that
y(t) ≥ a(t-D) (no buffer underflow)
y(t) ≤ a(t-D) + B (no buffer overflow)

y(t) = Π(x)(t) is not known but (x⊗ β)(t) ≤ y(t) ≤ x(t)

β a(t-D)x(t) y(t)

NetworkSmoother

ß(t)
σ

Video
display

B

Video
server

a(t+d)

82

© J-Y. Le Boudec and P. Thiran

The Min-Plus Residuation Theorem
From Baccelli et al, “Synchronization and Linearity”

Theorem: Assume that operator Π is upper-semi-
continuous. The problem

x(t) ≤ a(t) ∧ Π(x)(t)
has one maximum solution, given by
x(t) = Π(a)(t)

(Definition of closure of an operator)
Π (x) = inf {x, Π(x), ΠοΠ(x), ΠοΠοΠ(x),...}

Π is upper-semi continuous if infi(Π(xi)) = Π (infi(xi))
true in practice for all our systems

The greedy shaper output is an example of use

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

83

© J-Y. Le Boudec and P. Thiran

Massaging the Equations to use
Residuation

Output flow y(t) such that
(x⊗ β)(t) ≥ a (t-D) (no buffer underflow)
x(t) ≤ a(t-D) + B (no buffer overflow)

or equivalently using deconvolution operator Ø
x(t) ≥ (a Ø β)(t-D) = supu { a(t-D+u) - β(u) }
x(t) ≤ a(t-D) + B

Therefore find smallest D, B s.t. maximal solution of
x(t) ≤ { δ0(t) ∧ a(t+d) ∧ (a(t-D) + B) } ∧ {(x⊗ σ) (t) }

verifies
x(t) ≥ (a Ø β)(t-D)

84

© J-Y. Le Boudec and P. Thiran

Applying Residuation to our Problem
Maximal solution of

x(t) ≤ { δ0(t) ∧ a(t+d) ∧ (a(t-D) + B) } ∧ {(x ⊗ σ) (t) }
is, with σ sub-additive,

x(t) = σ ⊗ { δ0(t) ∧ a(t+d) ∧ (a(t-D) + B) }
= σ(t) ∧ { (σ ⊗ a)(t-D) + B } ∧ (σ ⊗ a)(t+d)

Need to check that this solution x(t) ≥ (a Ø β)(t-D)
σ(t) ≥ (a Ø β)(t-D)
-> D ≥ h(a, β ⊗ σ)
(σ ⊗ a)(t-D) + B ≥ (a Ø β)(t-D)
-> B ≥ v(a Ø a , β ⊗ σ)

(σ ⊗ a)(t+d) ≥ (a Ø β)(t-D)
-> D + d ≥ v(a Ø a , β ⊗ σ)

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

85

© J-Y. Le Boudec and P. Thiran

Bounds for D, B and d
In summary, we have shown that

the set of admissible playback delays D, playback buffer B
and look-ahead limit d is

D ≥ Dmin = h(a, β ⊗ σ)
D + d ≥ (D+d)min = h(a Ø a , β ⊗ σ)
B ≥ Bmin = v(a Ø a , β ⊗ σ)

in particular, there is a minimum playback delay.
if D, d, B satisfy the constraints above, a schedule is
possible;
else, there is no schedule that can guarantee correct
operation

86

© J-Y. Le Boudec and P. Thiran

time

bits

σ

β

The formulae have a simple
graphical interpretation

σ ⊗ β

(1) compute σ ⊗ β

Dmin = h(a, σ ⊗ β)

(2) compute the horizontal deviation

σ ⊗ β

(3) compute a ∅ a
and the horizontal deviation

bits
a

bits

σ ⊗ β

(D + d)min = h(a ∅ a, σ ⊗ β)
σ ⊗ β

bits

Bmin = v(a ∅ a , σ ⊗ β)

(4) compute the vertical deviation

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

87

© J-Y. Le Boudec and P. Thiran

Example: MPEG Trace

(a Ø a)(t)

a(t)

MPEG files, 25 frames/sec, discretized in
packets of 416 bytes

rt
Dmin

(D + d)min

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

playback delay Dmin [sec]

loo
ka

he
ad

 de
lay

 dm
in

[se
c]

Dmin

Dmin

d

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

rate [kBytes/sec.]

loo
ka

he
ad

 de
lay

 dm
in

[se
c]

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

rate [kBytes/sec.]

pla
yba

ck
del

ay
Dm

in [
sec

]

(D+d)min - Dmin
-

r

r

88

© J-Y. Le Boudec and P. Thiran

Actual values of delays depend on the length of
the stream and the position of largest burst, and
the ability to predict it
Example: in Jurassic Park trace,
largest burst occurs between
frames 28000 - 29000 40000 frames

40000 frames

20000 frames

20000 frames

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

89

© J-Y. Le Boudec and P. Thiran

Actual values of delays depend on the length of
the stream, the position of largest burst, and the
ability to predict it

320 340 360 380 400 420 440 460 480
0

0.2

0.4

0.6

0.8

1

1.2

1.4

rate [kBytes/sec]

pl
ay

ba
ck

 d
el

ay
 D

m
in

 [s
ec

]

max over 4 slices of
100 frames

400 frames

D

max (D1,D2,D3,D4)

D1 D2 D3 D4

D

90

© J-Y. Le Boudec and P. Thiran

Example 3: Dual problem formulation

Find smallest D, B and d s. t. the minimal solution of
x(t) ≥ (R Ø β)(t-D) ∨ (x Ø σ) (t)

verifies
x(t) ≤ δ0(t) ∧ R(t+d) ∧ {R(t-D) + B} .

Find smallest D, B and d s.t. the maximal solution of
x(t) ≤ δ0(t) ∧ R(t+d) ∧ {R(t-D) + B} ∧ (x⊗ σ) (t)

verifies
x(t) ≥ (R Ø β)(t-D) .

Property of Ø : x ≤ (x ⊗ σ) <-> (x Ø σ) ≤ x

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

91

© J-Y. Le Boudec and P. Thiran

Max-Plus System Theory in Action
From Baccelli et al, “Synchronization and Linearity”;
assume that Π is isotone and lower-semi-continuous.

Theorem : the problem
x(t) ≤ a(t) ∨ Π(x)(t)

has one minimum solution, given by xmin(t) = Π(a)(t)
(Definition of super-additive closure)

Π (x) = sup {x, Π(x), ΠοΠ(x), ΠοΠοΠ(x),...}
Minimal solution of

x(t) ≥ (R Ø β)(t-D) ∨ (x Ø σ) (t)
is, with σ sub-additive with σ(0) = 0,

xmin(t) = (R Ø (β ⊗ σ))(t-D)

92

© J-Y. Le Boudec and P. Thiran

Scheduling for Dmin, dmin and Bmin

xmax(t)

R(t-Dmin)

R(t)

Dmin t

Bmin

dmin

R(t+dmin)

xmax(t) = σ(t) ∧ (σ ⊗ R)(t+dmin) ∧ { (σ ⊗ R)(t-Dmin) + Bmin }
xmin(t) = (R Ø (β ⊗ σ))(t-D) (Le Boudec, Verscheure 2000)
+ Other metrics (Feng, Rexford 99):

xmin(t)

+ minimal rate variability (Salehi, Zhang, Kurose, Towsley 98)
+ ON-OFF (Zhang, Hui 97)

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

93

© J-Y. Le Boudec and P. Thiran

Conclusion
Network Calculus is a set of tools and theories for the
deterministic analysis of communication networks
A new system theory, which applies min-plus algebra to
communication networks
Does not supersede stochastic queueing analysis, but
gives new tools for analysis of sample paths
“Network calculus”, J-Y Le Boudec and P. Thiran,
Lecture Notes in Computer Sciences vol. 2050,
Springer Verlag, also available on-line at
http://lcawww.epfl.ch

