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0. What is Network Calculus ?
Deterministic analysis of queuing / flow systems arising
in communication networks
A Min-Plus or Max-Plus algebra filtering theory
Some references

R-L. Cruz « A calculus for network delay, part I and part II », 
IEEE Trans. on Information Theory, pp. 114-141, Jan 1991.
C-S. Chang « Performance guarantees in Communication 
Networks », Springer-Verlag, New York, 2000.
J-Y. Le Boudec and P. Thiran « Network calculus», Lecture 
Notes in Computer Sciences vol. 2050, Springer Verlag, New 
York, 2000.
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The standard Linear Theory

A LTI filter in conventional algebra (R, +, ×)
Input signal = electrical voltage x(t)
System = circuit (filter) with impulse response β(t)
Output = convolution of x(t) and β(t) :
y(t) = ∫ β(t-s) x(s) ds

x(t) y(t)β(t)
+ +

--
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Network Calculus uses Min-Plus Linear 
Theory

A linear system in min-plus algebra (R, min, +)
Input = arrived traffic in [0,t], x(t)
System = CBR trunk of rate c : β(t) = ct
Output = convolution of x(t) and β(t):
y(t) = infs {β(t-s)+ x(s) } 

CBR trunk

bit rate c
x(t) y(t)
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Network Calculus uses Max-Plus Linear 
Theory

A linear system in max-plus algebra (R, max, +)
Input = arrival time of nth packet (cell):T(n)
System = CBR trunk of rate c: β −1(n) = 424n/c
Output time = convolution of T(n) and β(n):
T*(n) = maxm {β −1(n-m) + T(m) } 

T(n) T*(n)
CBR trunk

bit rate c
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Preliminary Concepts
Arrival and Service Curves

Internet integrated services use the concepts of 
arrival curve and service curves
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Cumulative flows
Cumulative flow R(t) ∈ F , t real or integer
F = { x(t) | x(t) is non decreasing and x(t) = 0 for t < 0 }
Examples:

time t

bits

1 2 567 time t

bits

1 55.5 time t

bits

1 2 5 6

R1(t) R2(t) R3(t)

Fluid model (continuous) Packet model 
(left continuous)

Discrete-time model 

10
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Example
MPEG files, 25 frames/sec

αα

R R
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Cumulative flows

R3(n) = R2(nδ) , n integer, δ = 1

R’2(t) = R3(⎡t/δ⎤) , t real, δ = 1

time

bits

1 55.5 time

bits

1 2 5 6

R2(t) R3(t)

time

bits

1 5

R’2(t)
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Input and output flows

time t

bits

1 2 567 time t

bits

1 55.5 time t

bits

1 2 5 6

R(t) R(t) R(t)

S R R*

R*(t) R*(t)

Virtual delayBacklog
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Arrival Curves
Arrival curve α: For any times 0 ≤ s ≤ t, the 
cumulative flow R(.) satisfies

R(t) -R(s) ≤ α(t-s)
Example 1: affine arrival curve γr,b

α(t) = γr,b(t) = rt+b  for t>0

time

bits

b
slope r R(t)
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Example 2: stair arrival curve
α(t) = kuT,τ (t) = k ⎡(t+τ)/T⎤ if t > 0

with T = period, τ = tolerance
Characterizes flows that are periodic stream of 
packets of same size k (cells), which suffer a 
variable delay <= τ

time

bits

k

k ⎡(t+τ)/T⎤

T-τ 2T-τ 3T-τ 

2k
3k
4k

4T-τ 
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Example 2: stair arrival curve
α(t) = kuT,τ (t) = k ⎡(t+τ)/T⎤ with T = period, τ = tolerance
Characterizes flows that are periodic stream of packets of 
same size k (cells), which suffer a variable delay <= τ

Suppose that R(t) is T-periodic: R(t) – R(u) ≤ k ⎡(t-u)/T⎤
R*(s) ≥ R(s-τ)
R*(t) - R*(s) ≤ R(t) – R(s-τ) ≤ k ⎡(t-s+τ)/T⎤ = kuT,τ (t-s) 

S R R*

max  τ
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Arrival curve can assumed to be
left continuous

Technical lemma: if α(t) is an arrival curve for R, 
then αl (t) = sups<t α(s) is also an arrival curve for R.

time

bits

k

k ⎡(t+τ)/T⎤

2k
3k
4k

time

bits

b
slope r

rt + b

T-τ 2T-τ 3T-τ 4T-τ 
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Affine and stair arrival curve
R(t)  = flow of packets of same size k (cells)
R conforms to α(t) = kuT,τ (t) = k ⎡(t+τ)/T⎤

R conforms to α(t) = γr,b(t) = rt + b with r = k/T 
and b = k(τ +T)/T

time

bits

k

k ⎡(t+τ)/T⎤

2k
3k
4k

time

bits

b
slope r

rt + b

T-τ 2T-τ 3T-τ 4T-τ 
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Leaky bucket
All packets (cells) of flow R are declared
conformant by a leaky buket controller of rate r 
and size b
R conforms to α(t) = γr,b(t) = rt + b

R(t) rt + b

r

x(t)

b
R(t) slope r

t1 55.5

R(t)

b
x(t)
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Leaky bucket
All packets (cells) of flow R are declared conformant by a 
leaky buket controller of rate r and size b
R conforms to α(t) = γr,b(t) = rt + b
(⇒) (R(t)-x(t)) – (R(s)-x(s)) ≤ r(t-s)
⇒ x(t) ≥ R(t) – R(s) + x(s) - r(t-s) ≥ R(t) – R(s) - r(t-s) 
⇒ b ≥ x(t) ≥ R(t) – R(s) - r(t-s)

(⇐) R(t) – R(s) - r(t-s) ≤ b for any s < t. 
Let s = beginning of busy period at time t: x(s) = 0.
During ]s,t], the queue is never empty, so
x(t) = x(s) + R(t) – R(s) - r(t-s)  
⇒ x(t) ≤ b

r

x(t)

b

R(t) 
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GCRA (T,τ)
All packets (cells) of flow R are of the same size k
Arrival time of nth = A(n)
Theoretical arrival just after nth arrival is

θ(n) = max(A(n),θ(n-1)) + T 
If A(n+1) >= θ(n) – τ then cell is conformant, otherwise not 

Example: GCRA (10,2)
n 1 2 3 3 4 5
θ(n-1) 0 11 21 21 31 41
A(n) 1 11 16 20 29 38

c c nc c c nc
Equivalences: R conforms to GCRA (T,τ)
R conforms to staircase arrival curve α = kuT,τ

R conforms to leaky bucket (r = k/T, b = k(τ+T)/T)
R conforms to affine arrival curve α= γr,b
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Combining leaky buckets

time

bits

b

M

slope r

slope m
time

bits

b
slope r

standard arrival curve in the Internet (∧ = min)
α(u) = min (pu+M, ru+b) = (pu+M) ∧(ru+b)
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Sub-additivity and arrival curves
If α is an arrival curve for flow R, so is α
α(t) ≤ α(t)
What is α(t) ? 
The answer uses min-plus convolution and sub-additivity

T

k

α(t)

2T 3T

2k
3k
4k

4T T

k

α(t)

2T 3T

2k
3k
4k

4T
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Min-plus convolution ⊗
Definition

(f ⊗ g) (t) = infu { f(t-u) + g(u) }

t

f(t)

g(t)

(f ⊗ g)(t)
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Example 1
(f ⊗ g) (t) = ?

t
T

f(t)

R
K

s

f(s)

t

g(t)

r
t

g(t-s)
(f⊗g)(t)

tT

(f⊗g)(t)

r
K



© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

25

© J-Y. Le Boudec and P. Thiran

Example 2

(f ⊗ f) (t) = ?
tT

f(t)

R
K’

s

f(s)

t

f(t-s)(f⊗f)(t)

t2T

R

2K’

(f⊗f)(t)

26

© J-Y. Le Boudec and P. Thiran

We can express arrival curves with min-
plus convolution

Arrival Curve property means for all 0 ≤ s ≤ t, 
x(t) -x(s) ≤ α(t-s)

<-> x(t) ≤ x(s) + α(t-s) for all 0 ≤ s ≤ t
<-> x(t) ≤ infu { x(u) + α(t-u) }
<-> x ≤ x ⊗ α
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Star-shaped, concave, convex functions

f∈ F 
f is concave ∀ 0 ≤ u ≤ 1, f (ux + (1-u)y) ≥ uf(x) + 
(1-u)f(y)
f is convex -f is concave 
f is star-shaped f(t)/t ≤ f(s)/s   ∀ s ≤ t
f is concave ⇒ f is star-shaped
f is star-shaped ⇒ f is concave 
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Sub-additive function

f is sub-additive f (t) + f(s) ≥ f(t+s)
f is concave with f(0) = 0 ⇒ f is star-shaped
f is sub-additive ⇒ f is star-shaped
f,g are sub-additive and pass through the origin
(f(0) = g(0) = 0) ⇒ f ⊗ g is sub-additive



© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

29

© J-Y. Le Boudec and P. Thiran

Examples

γr,b is concave
time

bits

b
slope r

γr,b(t)

time

bits

k

uT,τ (t)

2k
3k
4k

uT,τ is star-shaped ?
sub-additive ?

T-τ 2T-τ 3T-τ 4T-τ 
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Examples

δT is convex
time

bits

delay T

δT(t)

bits

βR,T is convex

time

bits

latency T

βR,T(t)

Slope (rate) R
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Examples

time

bits

T

βR,T(t)+K’

R

K’

time

bits

T

βR,T(t)+K’’

R

K’’

βR,T + K’ is star-shaped ? 
Sub-additive ?

βR,T + K’’ is star-shaped ?
Sub-additive ?
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Some properties of min-plus convolution
(f ⊗ g) ∈ F 
⊗ is associative
⊗ is commutative
Neutral element: δ0 : f ⊗ δ0 = f

( δ0 (t) = 0 for t = 0 and δ0 (t) = ∞ for t > 0)
⊗ is distributive with respect to ∧
⊗ is isotone: f ≤ f’ and  g ≤ g’ ⇒ f ⊗ g ≤ f’ ⊗ g’
Functions passing through the origin (f(0) = g(0) = 0): 

f ⊗ g ≤ f ∧ g 
Star-shaped (concave) functions passing through the origin:

f ⊗ g = f ∧ g 
Convex piecewise linear functions: f ⊗ g is the convex
piecewise linear function obtained by putting end-to-end all 
linear pieces of f and g, sorted by increasing slopes
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Example: rate latency function

δT is convex
(delay function)

βR,T is convex
(rate-latency function)

latency T

βR,T(t)

Slope (rate) R
=

delay T

δT(t)

⊗

λR(t)=Rt

Rate R

λR is convex
(delay function)
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Example 1 (using rules)

t
T

f(t)

R
K f = K + βR,T

= K + δT ⊗ λR

f⊗g = (K + δT ⊗ λR) ⊗ λr 
= K + ((δT ⊗ λR) ⊗ λr)
= K + (δT ⊗ (λR ⊗ λr ))
= K + (δT ⊗ (λR ∧ λr ))
= K + (δT ⊗ λr )
= K + βr,T

t

g(t)

r

g = λr concave
with g(0) = 0

t
T

(f⊗g)(t)

r
K
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Sub-additive closure

f = inf {δ0 ,f,f ⊗ f, f ⊗ f ⊗ f,… }
f is sub-additive with f(0) = 0
f is sub-additive with f(0) = 0 f =f f = f ⊗ f
f ≤ g ⇒ f ≤ g
f ∧ g = f ⊗g 
Functions passing through the origin (f(0) = g(0) = 0): 

f ⊗ g = f ⊗ g
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Examples

time

bits

T

βR,T(t)+K’
R

K’

time

bits

T

βR,T(t)+K’’
R

K’’

2T

2K’

(βR,T(t)+K’)(2)

(βR,T(t)+K’)(2)

2T

βR,T(t)+K’’

βR,T(t)+K’
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Sub-additivity and arrival curves

bits

k

α(t)

T 2T 3T

2k
3k
4k

4T T 2T 3T 4T

α(t)

What is α(t) ? 
α can be replaced by its sub-additive closure α.
From now on: we will always take sub-additive arrival

curves passing through the origin.
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Minimal arrival curve
If the only available information on a flow is obtained

from measurements, i.e if we only know R, how can we
compute its minimal arrival curve α ?

The answer uses min-plus deconvolution

R



© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA

Network Calculus

39

© J-Y. Le Boudec and P. Thiran

Min-plus deconvolution Ø
Definition

(f Ø g) (t) = supu { f(t+u) - g(u) }

t

f(t)

g(t)

(f ∅ g)(t)
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Some properties of min-plus deconvolution
(f ∅ g) ∉ F in general
(f ∅ f) ∈ F 
(f ∅ f) is sub-additive with (f ∅ f) (0) = 0
(f ∅ g) ∅ h = f ∅ (g ⊗ h) 
Duality with ⊗ : f ∅g ≤ h ⇔ f ≤ g ⊗ h
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The minimal arrival curve of flow R is α = R Ø R .
Proof:

It is an arrival curve because
R(t) – R(s) = R((t-s)+s) - R(s) 

≤ supu { R((t-s)+u) - R(u) } = (R Ø R) (t-s)
If α’ is another arrival curve for flow R, then R ≤ R ⊗ α’
⇔ R Ø R ≤  α’ so that  α ≤ α’ .

Minimal arrival curve

42
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Example
MPEG files, 25 frames/sec

αα

R R
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Two key Concepts
Arrival and Service Curves

Internet integrated services use the concepts of 
arrival curve and service curves

44
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Contents
0. What is Network Calculus

1. Arrival curves
2. Service curves, backlog, delay bounds

Minimal vs strict service curves
Backlog and delay bounds

Concatenation
Packetizer

Adaptive service curves
Guaranteed Rate Servers 

3. Playback delay for pre-recorded video
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Minimal service Curve
System S offers a (minimal) service curve β to a flow 
iff for all t there exists some s such that

y(t) - x(s) ≥ β (t-s)

S x y

t

y(t)

s

x(s)

x yβ (t)
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Strict service Curve
Minimal service curve β : for all t there exists some s such that
y(t) - x(s) ≥ β (t-s)
Strict service curve β : during any backlogged period [s,t], y(t) -
y(s) ≥ β (t-s)

S x y
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The constant rate server has (strict) 
service curve β(t)=ct

Proof: take s = beginning of busy period: 
y(t) – y(s) = c (t-s)  and y(s) = x(s)

->  y(t) – x(s)   = c (t-s)

buffer

s           t 0

ct

t

48
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The guaranteed-delay node has 
(minimal) service curve δT

seconds

≤ T

x
y

0     T

δT   (t)

Function δT

t
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We can express service curves with min-
plus convolution

Service Curve guarantee means there exists some
0 ≤ s ≤ t :    y(t) - x(s) ≥ β (t-s)

y(t) ≥ x(s) + β(t-s) for some 0 ≤ s ≤ t
y(t) ≥ infu { x(u) + β(t-u) }
y ≥ x ⊗ β
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Backlog and (virtual) delay
Flow x is constrained by arrival curve α
System S offers a (minimal) service curve β to this flow 
Backlog at time t is x(t) – y(t)
Virtual delay d(t) at time t is d(t) = inf{ δ ≥ 0 | x(t) ≤ y(t + δ) }

S x y

time t1 2 567

x(t)
Y(t)

time t

bits

1 55.5

y(t)

bits

x(t)
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Non preemptive priority node –
High priority traffic

Pick any t, let s be the beginning of the busy period before t for 
HP traffic. With possible delay due to a LP packet that arrived 
just before s, of max size lmax

yH(t) – yH(s) ≥ C(t-s) – lmax and yH(s) = xH(s) 
⇒ yH(t) – xH(s) ≥ C(t-s) – lmax

Now, yH(t) – xH(s) = yH(t) – yH(s) ≥ 0 
⇒ yH(t) – xH(s) ≥ [C(t-s) – lmax ]+

Service curve for HP traffic is βC,lmax /C

xH(t) Rate C yH(t)

xL(t) yL(t)
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Non preemptive priority node
Low priority traffic

Assume αH, is an arrival curve for HP traffic. 
Let s’ be the beginning of the busy period of the server before t. 
yL(t) – yL(s’) = C(t-s’) – (yH(t) – yH(s’))  
and yH(s’) = xH(s’) and yL(s’) = xL(s’) 
⇒ yL(t) – xL(s’) = yL(t) – yL(s’) = C(t-s’) – (yH(t) – xH(s’)) 

≥ C(t-s’) – (xH(t) – xH(s’)) ≥ C(t-s’) – αH,(t - s’) 
Now, yL(t) – xL(s’) = yL(t) – yL(s’) ≥ 0 
⇒ yL(t) – xL(s’) ≥ [C(t-s’) – αH(t - s’)]+

Service curve for LP traffic is S(t) = [Ct – αH(t)]+

If αH = γr,b then S = βC-r.b/(C-r)

xH(t) Rate C yH(t)

xL(t) yL(t)
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The standard model for an 
Internet router

rate-latency service curve βR,T

T

bits

R

seconds
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Three fundamental bounds
If flow has arrival curve α and node offers service curve β then

backlog ≤ sup (α(s) -β(s)) = (α Ø β)(0) = v(α, β)
delay ≤ inf { s ≥ 0 : (α Ø β)(-s) ≤ 0 } = h(α, β)
Output flow y is constrained by arrival curve α’ = α Ø β

α

β

h(α,β)

v(α,β)
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Tight Bound on backlog
Flow x is constrained by arrival curve α
System S offers a (minimal) service curve β to this flow 
Backlog at time t is x(t) – y(t)
Backlog ≤ sup (α(s) -β(s)) = (α Ø β)(0) = v(α, β)

α

βv(α,β)
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Tight Bound on delay
Flow x is constrained by arrival curve α
System S offers a (minimal) service curve β to this flow 
Virtual delay d(t) at time t is d(t) = inf{ δ ≥ 0 | x(t) ≤ y(t + δ) }
delay ≤ inf { s ≥ 0 : (α Ø β)(-s) ≤ 0 } = h(α, β)

α

β

h(α,β)
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Arrival Curve of output flow
Flow x is constrained by arrival curve α
System S offers a (minimal) service curve β to this flow 
Output flow y is constrained by arrival curve α’ = α Ø β

S x y

Proof: x(t) ≤ y(t)  and y(s) ≥ infu (x(u) - β (s-u)) 
⇒ y(t) - y(s) ≤ x(t) – infu (x(u) - β (s-u)) 

= supu {x(t) – x(u) - β (s-u) } 
≤ supu { α(t-u) - β (s-u) } 
= supv { α(t-s+v) - β (v) }
= (α Ø β )(t-s)
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The composition theorem
Theorem: the concatenation of two network elements each
offering service curve βi offers the service curve β1 ⊗ β2

β1 ⊗ β2

β2β1
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R1 R2

T2

⊗ =

T1

Example

tandem of routers

R1

T2 T1+T2
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Pay Bursts Only Once

β2

D1 D2

α β1

D

α β1⊗ β2

D ≤ b /R + T1 + T2

end to end delay bound is less

D ≤ b /R + T1 + T2

end to end delay bound is less

D1 +D2 ≤ (2b + rT1)/ R + T1 + T2D1 +D2 ≤ (2b + rT1)/ R + T1 + T2
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Greedy shaper

Definition of Greedy shaper
forces output to be constrained by arrival curve σ

x(t) - x(s) ≤ σ(t - s)
stores data in a buffer if needed
Hence the shaper maximises x(t) such that

x(t) ≤ R(t)
x(t) ≤ (x⊗ σ) (t)

R(t)

σ

Shaper

x(t)
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Output of a Greedy shaper

R(t)

σ

Shaper

x(t)

If σ is sub-additive and σ(0) = 0, x(t) = (R⊗ σ) (t)
Proof:

x = R ⊗ σ is a solution because
x = R ⊗ σ ≤ R  since σ(0) = 0
x = R ⊗ σ = R ⊗ (σ ⊗ σ) = (R ⊗ σ) ⊗ σ = x ⊗ σ  

If x’ is another solution then x’ ≤ R and x ’ ≤ x’ ⊗ σ . 
Combining the two and using isotonicity of ⊗ :

x ’ ≤ x’ ⊗ σ ≤ R ⊗ σ = x
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Greedy shaper = linear min-plus filter
Standard convolution in (R, x, +) (LTI filter)

y(t) = (σ ∗ x)(t) = ∫ σ(t-u) x(u) du

Min-plus convolution in (R, +, ∧) is linear (∧ = min)
y(t) = (σ ⊗ x) (t) = infu { σ(t-u) + x(u) }

x(t) y(t)σ(t)
+ +

--

shaper σ
x y
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The service curve of a Greedy shaper
is its shaping curve

x(t)

σ

Shaper

y(t)

If σ is sub-additive and σ(0) = 0, y(t) = (x⊗ σ) (t). 
The service curve of a shaper is thus σ.
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Shaping cannot be undone by shaping

R(t)

σ

Shaper

x(t)

Suppose that R(t) is constrained by arrival curve α : R ≤ R ⊗ α .
Then x = R ⊗ σ ≤ (R ⊗ α) ⊗ σ = R ⊗ (α ⊗ σ) ≤ R ⊗ α since σ(0) = 0. 
Therefore shaping keeps arrival constraints. 
In fact, the output flow has α ⊗ σ as arrival curve
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Re-shaping is for free

Suppose that R(t) is constrained by arrival curve α 
Backlog for first system = v(α, β1 ⊗ β2) = (α Ø(β1 ⊗ β 2))(0) 
Backlog for second system with intermediate shaper = 
v(α, β1 ⊗σ ⊗β2) = (α Ø(β1 ⊗ σ ⊗β2))(0) = (α Ø(σ ⊗ β1 ⊗β2))(0) 

= (( α Ø σ) Ø ( β1 ⊗β2))(0) 
Since α ≤ σ and α is sub-additive with α(0) = 0, 
(αØσ)(t) = supu{α(t+u) - σ(u)} ≤ supu{α(t+u) - α(u)} =(αØα)(t) = α(t) 
Therefore v(α, β1 ⊗σ ⊗β2) = (α Ø(β1 ⊗ β 2))(0) = v(α, β1 ⊗ β2) 
Same reasoning for delays: h(α, β1 ⊗σ ⊗β2) = h(α, β1 ⊗ β2) 

α
β1

β2
β1 ⊗ β2

end-to-end
service curve

Shaper

σ ≥ αα
β1 β2 β1 ⊗σ ⊗β2
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Handling variable size packets
The shaper presented before is for constant size 
packets or ideal fluid systems
Real life systems are modelled by adding a packetizer
transforms fluid input into packets of size l1, l2, l3, …

Packetizer adds some distortion

c

l1l2l3 l1l2l3

(PL )

constant rate server
= 

greedy shaper σ(t)=ct 
+ packetizer

R(t)
R’(t)

R*(t)

T1 T2 T3

l1 + l2 + l3

l1 + l2
l1
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Goal of Service Curve and GR node
definitions

define an abstract node model
independent of a specific type of scheduler
applies to real routers, which are not a single 
scheduler, but a complex interconnection of delay and 
scheduling elements
applies to nodes that are not work-conserving
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Adaptive service Curve
Minimal service curve β : for all t there exists some s
such that y(t) ≥ β (t-s) + x(s)
Strict service curve β : during any backlogged period
[s,t], y(t) ≥ β (t-s) + y(s)
Adaptive service curve β : for all t and all s ≤t,

y(t)  ≥ { β (t-s) + y(s) } ∧ infs ≤= u ≤= t {β(t-u) + x(u)}
(in fact: adaptive guarantee (β’ , β)

y(t)  ≥ { β’ (t-s) + y(s) } ∧ infs ≤= u ≤= t {β(t-u) + x(u)}
Strict ⇒ Adaptive ⇒ Minimal
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The constant rate server has (adaptive) 
service curve β(t)=ct

Proof: ct is a minimal service curve

buffer

s           t 0

ct

t
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The guaranteed-delay node has 
(adaptive) service curve δT

seconds

≤ T

x
y

0     T

δT  (t)

t

Proof: Pick any s ≤ t. 
If t-s ≤ T then trivially y(t)  ≥ δT(t-s) + y(s)
If t-s > T then infs ≤= u ≤= t {δT(t-u) + x(u)} = x(t-T) ≤ y(t)
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The adaptive service curve of a 
Greedy shaper is (σ Ø σ, σ)

x(t)

σ

Shaper

y(t)

Max-plus deconvolution:(f Ø g) (t) = infu { f(t+u) - g(u) }
y(t) = (x⊗ σ) (t) = inf0 ≤= u ≤= t {σ(t-u) + x(u)} 

= inf0 ≤= u ≤ s {σ(t-u) + x(u)} ∧ infs ≤= u ≤= t {σ(t-u) + x(u)}
≥ inf0 ≤= u ≤ s {σ(s-u) + inf v {σ(t-s+v) - σ(v) } + x(u)}  

∧ infs ≤= u ≤= t {σ(t-u) + x(u)}
≥ { inf0 ≤= u ≤ s {σ(s-u) + x(u)} + (σ Øσ)(t-s) }

∧ infs ≤= u ≤= t {σ(t-u) + x(u)}
= { y(t) + (σ Øσ)(t-s) } ∧ infs ≤= u ≤= t {σ(t-u) + x(u)}
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Guaranteed Rate node
An alternative definition to service curve for 
FIFO

for rate-latency service curves only
Definition (Goyal, Lam, Vin; Chang): 
a node is GR(r,e) if 

D(n)  ≤ F(n) + e
F(n) = max{A(n), F(n-1)} + l(n)/r

D(n) : departure time for packet n
A(n) : arrival time
F(n) : virtual finish time, F(0) = 0
l(n) : length in bits for packet n
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F(n-1) D(n-1)A(n)

F(n) D(n)

l(n)/r

F(n-1) D(n-1) A(n)

F(n) D(n)

l(n)/r

F(n) = max{A(n), F(n-1)} A+ l(n)/rF(n) = max{A(n), F(n-1)} A+ l(n)/r
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GR is equivalent to rate-latency
service curve -- for FIFO per flow

GR(r,e) is equivalent to
D(n) ≤ maxk≤n[A(k) + (l(k) + … + l(n))/r] + e

max-plus analog to service curve
Theorem (equivalence for FIFO per flow nodes): 

a GR node is a service curve element with rate-latency service 
curve (r,e) followed by a packetizer
conversely, consider a node which is FIFO per flow and 
serves entire packets. If it has the rate-latency service 
curve (R,T) then it is GR(R,T).

FIFO per flow is true in IntServ context
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Properties of GR nodes
(FIFO per flow or not)

delay bound = h(α, β) 
Dmax= e + sup[α(t)/r-t]

for FIFO per flow nodes = delay at service curve element
(packetizer does not add per-packet delay)
backlog bound = v(α, β) + lmax

Bmax=  sup[α(t)-R(t-T)+] + lmax

e

rα(t)

Dmax= e + sup(α(t)/r-t)

time

bits
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Modelling a node with GR
queue with rate C: R=C, T=0
priority queue with rate C: R=C, T=lmax/C

element with bounded delay d: R = ∞, T=d 
and combine these elements
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Contents
0. What is Network Calculus ? 

1. Arrival curves
2. Service curves, backlog, delay bounds
3. Playback delay for pre-recorded video
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Network delivery of Pre-
recorded video

Le Boudec and Verscheure ToN 2000, Thiran, Le Boudec and Worm, Infocom
2001
Network + end-station offers a service curve β to flow 
x(t) (intserv or diffserv + real time model of end-
station)
Smoother delivers a flow x(t) conforming to an arrival 
curve σ. Can look-ahead on the server (max d time units)
Video stream is stored in the client buffer B and read 
after a playback delay D.

β a(t-D)x(t) y(t)

NetworkSmoother

ß(t)
σ

Video 
display

B

Video 
server

a(t+d)
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Network delivery of Pre-
recorded video

What are the minimal values of D and B, given d, σ
and β ?
What is the scheduling (smoothing) strategy at the 
sender side that achieves these minimal values ? 
Is this optimal smoothing strategy unique ?
Does a large look-ahead delay d help in reducing D
and B ?

β a(t-D)x(t) y(t)

NetworkSmoother

ß(t)
σ

Video 
display

B

Video 
server

a(t+d)
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Putting the Problem into Equations

Smoothed flow x(t) such that
x(t) ≤ δ0(t)                (i.e, x(t) = 0 if t ≤0)
x(t) ≤ a(t+d)              (look-ahead up to d time units)
x(t) ≤ (x⊗ σ) (t)        (smoothing)

Output flow y(t) such that
y(t) ≥ a(t-D)             (no buffer underflow)
y(t) ≤ a(t-D) + B       (no buffer overflow)

y(t) = Π(x)(t) is not known but (x⊗ β)(t) ≤ y(t) ≤ x(t)

β a(t-D)x(t) y(t)

NetworkSmoother

ß(t)
σ

Video 
display

B

Video 
server

a(t+d)
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The Min-Plus Residuation Theorem
From Baccelli et al, “Synchronization and Linearity”

Theorem: Assume that  operator Π is upper-semi-
continuous. The problem

x(t) ≤ a(t) ∧ Π(x)(t)
has one maximum solution, given by 
x(t) = Π(a)(t)

(Definition of closure of an operator) 
Π (x) = inf {x, Π(x), ΠοΠ(x),  ΠοΠοΠ(x),...}

Π is upper-semi continuous if infi(Π(xi )) =  Π (infi(xi))
true in practice for all our systems

The greedy shaper output is an example of use
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Massaging the Equations to use 
Residuation

Output flow y(t) such that
(x⊗ β)(t)  ≥ a (t-D)   (no buffer underflow)
x(t) ≤ a(t-D) + B       (no buffer overflow)

or equivalently using deconvolution operator Ø
x(t)  ≥ (a Ø β )(t-D) = supu { a(t-D+u) - β(u) }
x(t) ≤ a(t-D) + B

Therefore find smallest D, B s.t. maximal solution of
x(t) ≤ { δ0(t) ∧ a(t+d) ∧ (a(t-D) + B) } ∧ {(x⊗ σ) (t) }

verifies
x(t) ≥ (a Ø β )(t-D)
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Applying Residuation to our Problem
Maximal solution of

x(t) ≤ { δ0(t) ∧ a(t+d) ∧ (a(t-D) + B) } ∧ {(x ⊗ σ) (t) } 
is, with σ sub-additive,

x(t) = σ ⊗ { δ0(t) ∧ a(t+d) ∧ (a(t-D) + B) }
= σ(t) ∧ { (σ ⊗ a)(t-D) + B } ∧ (σ ⊗ a)(t+d) 

Need to check that this solution x(t) ≥ (a Ø β )(t-D)
σ(t) ≥ (a Ø β )(t-D) 
->  D ≥ h(a, β ⊗ σ)
(σ ⊗ a)(t-D) + B ≥ (a Ø β )(t-D)
->  B ≥ v(a Ø a , β ⊗ σ)

(σ ⊗ a)(t+d) ≥ (a Ø β )(t-D) 
->  D + d ≥ v(a Ø a , β ⊗ σ) 
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Bounds for D, B and d
In summary, we have shown that

the set of admissible playback delays D, playback buffer B 
and look-ahead limit d is

D ≥ Dmin = h(a, β ⊗ σ)
D + d ≥ (D+d)min = h(a Ø a , β ⊗ σ)
B ≥ Bmin = v(a Ø a , β ⊗ σ)

in particular, there is a minimum playback delay.
if D, d, B satisfy the constraints above,  a schedule is
possible;
else, there is no schedule that can guarantee correct 
operation
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time

bits

σ

β

The formulae have a simple 
graphical interpretation

σ ⊗ β

(1) compute σ ⊗ β

Dmin = h(a, σ ⊗ β)

(2) compute the horizontal deviation

σ ⊗ β

(3) compute a ∅ a
and the horizontal deviation

bits
a

bits

σ ⊗ β

(D + d)min = h(a ∅ a, σ ⊗ β)
σ ⊗ β

bits

Bmin = v(a ∅ a , σ ⊗ β)

(4) compute the vertical deviation
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Example: MPEG Trace

(a Ø a)(t)

a(t)

MPEG files, 25 frames/sec, discretized in 
packets of 416 bytes

rt
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Actual values of delays depend on the length of 
the stream and the position of largest burst, and 
the ability to predict it
Example: in Jurassic Park trace, 
largest burst occurs between 
frames 28000 - 29000 40000 frames

40000 frames

20000 frames

20000 frames
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Actual values of delays depend on the length of 
the stream, the position of largest burst, and the 
ability to predict it

320 340 360 380 400 420 440 460 480
0

0.2

0.4

0.6

0.8

1

1.2

1.4

rate [kBytes/sec]

pl
ay

ba
ck

 d
el

ay
 D

m
in

 [s
ec

]

max over 4 slices of 
100 frames

400 frames

D

max (D1,D2,D3,D4)

D1 D2 D3 D4

D
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Example 3: Dual problem formulation

Find smallest D, B and d s. t. the minimal solution of 
x(t) ≥ (R Ø β )(t-D) ∨ (x Ø σ ) (t) 

verifies
x(t) ≤ δ0(t) ∧ R(t+d) ∧ {R(t-D) + B} .

Find smallest D, B and d s.t. the maximal solution of
x(t) ≤ δ0(t) ∧ R(t+d) ∧ {R(t-D) + B} ∧ (x⊗ σ) (t) 

verifies
x(t) ≥ (R Ø β )(t-D) .

Property of Ø : x ≤ (x ⊗ σ ) <->  (x Ø σ ) ≤ x
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Max-Plus System Theory in Action
From Baccelli et al, “Synchronization and Linearity”; 
assume that Π is isotone and lower-semi-continuous.

Theorem : the problem
x(t) ≤ a(t) ∨ Π(x)(t)

has one minimum solution, given by xmin(t) = Π(a)(t)
(Definition of super-additive closure) 

Π (x) = sup {x, Π(x), ΠοΠ(x),  ΠοΠοΠ(x),...}
Minimal solution of

x(t) ≥ (R Ø β )(t-D) ∨ (x Ø σ ) (t) 
is, with σ sub-additive with σ(0) = 0,

xmin(t) = (R Ø (β ⊗ σ))(t-D)
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Scheduling for Dmin, dmin and Bmin

xmax(t)

R(t-Dmin )

R(t)

Dmin t

Bmin

dmin

R(t+dmin )

xmax(t) = σ(t) ∧ (σ ⊗ R)(t+dmin) ∧ { (σ ⊗ R)(t-Dmin) + Bmin }
xmin(t) = (R Ø (β ⊗ σ))(t-D) (Le Boudec, Verscheure 2000)
+ Other metrics (Feng, Rexford 99):

xmin(t)

+ minimal  rate variability (Salehi, Zhang, Kurose, Towsley 98)
+ ON-OFF (Zhang, Hui 97)
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Conclusion
Network Calculus is a set of tools and theories for the 
deterministic analysis of communication networks
A new system theory, which applies min-plus algebra to 
communication networks
Does not supersede stochastic queueing analysis, but 
gives new tools for analysis of sample paths
“Network calculus”, J-Y Le Boudec and P. Thiran, 
Lecture Notes in Computer Sciences vol. 2050, 
Springer Verlag, also available on-line at 
http://lcawww.epfl.ch


