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Network Calculus

0. What is Network Calculus ?

ODeterministic analysis of queuing / flow systems arising
in communication networks

OA Min-Plus or Max-Plus algebra filtering theory

O Some references

® R-L. Cruz « A calculus for network delay, part I and part II »,
IEEE Trans. on Information Theory, pp. 114-141, Jan 1991.

e C-S. Chang « Performance guarantees in Communication
Networks », Springer-Verlag, New York, 2000.

e J-Y. Le Boudec and P. Thiran « Network calculus», Lecture

Notes in Computer Sciences vol. 2050, Springer Verlag, New
York, 2000.

© J-Y. Le Boudec and P. Thiran

The standard Linear Theory

+ +

x(t) B(*) T y(¥)

OA LTI filter in conventional algebra (R, +, x)
e Input signal = electrical voltage x(1)
e System = circuit (filter) with impulse response g(t)
e Output = convolution of x(*)and (%) :
wv(t) =/ p(t-s) x(s) ds

© J-Y. Le Boudec and P. Thiran
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Network Calculus

Network Calculus uses Min-Plus Linear
Theory

CBR trunk
O ¥

— bit rate ¢

x(t)

OA linear system in min-plus algebra (R, min, +)
e Input = arrived traffic in [0,#], x(1)
e System = CBR trunk of rate c¢: g(t) = ct
e Output = convolution of x(7)and (1)
y(t) = inf {B(t-s)+ x(s) }

© J-Y. Le Boudec and P. Thiran
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Network Calculus uses Max-Plus Linear
Theory

CBR trunk
\ T*(n)
bit rate ¢

T(n)

OA linear system in max-plus algebra (R, max, +)
e Input = arrival time of nth packet (cell): 7(n)
e System = CBR trunk of rate ¢ g-(n) = 424n/c
e Output time = convolution of T{n)and S(n).
T*(n) = max,, {B~"(n-m) + T(m) }

© J-Y. Le Boudec and P. Thiran
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Preliminary Concepts
Arrival and Service Curves

OInternet integrated services use the concepts of
arrival curve and service curves

/

L_.E < =11 W

© J-Y. Le Boudec and P. Thiran
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Cumulative flows
O Cumulative flow R(?) € ¥, treal or integer
OF = x(t) | x(t) is non decreasing and x(t) = O for t < 0 }
O Examples:
bits bits bits
RI(1) R2(1) R3(1)
12 567 timet ! 9%% timet 12 %% timet
Fluid model (continuous) Packet model Discrete-time model
(left continuous)
© J-Y. Le Boudec and P. Thiran
10
Example
OMPEG files, 25 frames/sec
L:h'!w}rﬁi-h‘&MﬂN"M{*‘J*ﬁd;| Nt | “ |ll |;|||l| | ,| | || L |LJ e | ||l | ] | T
5 VAN Lo
E,,"- frame nurmber g:‘.‘{ 50 100 150 lﬁ“aﬂf . 250 k= 350 “00
i R iR '
© J-Y. Le Boudec and P. Thiran
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Cumulative flows

OR3(n) = R2(n5), ninteger, 5=1
OR2(t) = R3('t/5]), treal, 5=1

bits bits bits
R2(1) R3(1) R2(1)
L5955 time 12 56 time b5 time
© J-Y. Le Boudec and P. Thiran
12
Input and output flows
Backlog Virtual delay
bits bits bits
R(1) R(1) R(1)
72t I
dl S
12 567 timet ! 5%% timet 1?2 %%  timet
© J-Y. Le Boudec and P. Thiran
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Arrival Curves

OArrival curve a: For any times O < s< #, the
cumulative flow R( ) satisfies

R(1) -R(5) < o.(t-5)
Example 1: affine arrival curve v, ,
o(t)= v, (1) = rt+b for 10

bits
slope r R(1)
b /
time

© J-Y. Le Boudec and P. Thiran
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Example 2: stair arrival curve

Oo(t)= kuy, (1) = k/(++0)/T] if +50
with T = period, 7 = folerance

OCharacterizes flows that are periodic stream of
packets of same size k (cells), which suffer a

variable delay <= 7 bits kI (Feo)/T]

4k
3k
2k

k

T-7 2T-7 3T-7 4T-7 time

© J-Y. Le Boudec and P. Thiran
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Example 2: stair arrival curve
O a(t)= ku,.(t) = k/(t+7)/T/with T = period, 7 = tolerance

O Characterizes flows that are periodic stream of packets of
same size k (cells), which suffer a variable delay <= 7

max t
O Suppose that R(t)is T-periodic: R(t) - R(w)< k/(+-u)/T]

O R*(s)> R(s-7)
O R*(t) - R*(s)< R(t) - R(s-1) < k/(t-s+t)/T] = kuy. (t-5)

© J-Y. Le Boudec and P. Thiran
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Arrival curve can assumed to be
left continuous

OTechnical lemma: if o.(7)is an arrival curve for R,
then o, (1) = sup,.,o.(s)is also an arrival curve for R.

bits
. k[(++0)/T]
bits rteh
4k
slope r 3k
k
time T-7 2T-7 3T-7 47T-7 time

© J-Y. Le Boudec and P. Thiran
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Affine and stair arrival curve

OR(?) = flow of packets of same size k (cells)
OR conforms to a(t)= kuy (1) = k/(t+c)/T]

< R conforms to o(t) =y, ,(t) =rt +bwithr = k/T
and b = k(z +T)/T  pits

. k[(++0)/T]
bits rt e b
4k
slope r 3k
k
time T-72T-73T-7 4T-7  time

© J-Y. Le Boudec and P. Thiran
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Leaky bucket

OAIl packets (cells) of flow R are declared
conformant by a leaky buket controller of rate r
and size b

& Rconforms to o(t) =y, (1) = rt+b

rt+b R(t) R()
slope r AVt)J b -
/ (1) e
x(t)
| - 1 555 t

r

© J-Y. Le Boudec and P. Thiran
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Leaky bucket

O All packets (cells) of flow R are declared conformant by a
leaky buket controller of rate r and size b

< R conforms to o(t) =y, p(t)=rt+b
O (=) Rt)-x(1) - (R(s)-x(s)) < r(t-s)

= x(1)> R(1) - R(s) + x(s) - r(t-s)> R(1) - R(s) - r(1-s)

= b2 x(1)= R(1t) - R(s) - r(t-s) R(1)
O (<) R(H) -R(s) - r(t-s)< bforany s < t.

Let 5= beginning of busy period at time #: x(s) = O.

During Js,1] the queue is never empty, so (8]

x(1) = x(s) + R(t) - R(5) - r(t-s)

= x(1)< b

© J-Y. Le Boudec and P. Thiran
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GCRA (T,7)
O All packets (cells) of flow R are of the same size k
O Arrival time of nth = A(n)
O Theoretical arrival just after nth arrival is
o(n) = max(A(n)o(n-1)+ T

OIf A(n+1)>= 9(n)- rthen cell is conformant, otherwise not

Example: GCRA (10,2)

n 1 2 3 3 4 5

O(n-1) o 11 21 21 31 41

An) 1 11 16 20 29 38
C C nc C C nc

O Equivalences: R conforms to GCRA (T,7)
& Rconforms to staircase arrival curve o = Auy,
< R conforms to leaky bucket (r = k/T, b = k(z+T)/T)

< Rco J‘or'ms to affine arrival curve o=y, ,
© J-Y. Le Boudec and P. Thiran
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Combining leaky buckets

Ostandard arrival curve in the Internet (A = min)
a(u)= min (pu+M, ru+b) = (pu+M) A(ru+b)

bits bits
slope r

b| —— b

time M

© J-Y. Le Boudec and P. Thiran
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Sub-additivity and arrival curves

OIf «is an arrival curve for flow R, so is &

Oa(t)< aft)

O What is a(t) ?

O The answer uses min-plus convolution and sub-additivity

a(t) a(7)
4k — 4k

3k — 3k //——//__
2k — < 2k

k k //__

T 2T 3T 47 T 2T 3T 47

© J-Y. Le Boudec and P. Thiran
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Min-plus convolution ®

ODefinition
(F®g)®)=inf, { A(t-u)+ g(u)}

g(t)

* 3 9®

L
© J-Y. Le Boudec and P. Thiran
1
‘) Example
(Fr®g)(1)=2
R
K
" |f® // (FOg)1)
(F@g)X1) "
g(t)
g(t-s) %
T
r > >
t s T T
‘71'
© J-Y. Le Boudec and P. Thiran
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(f®f)(f)//

Example 2

(1)

T t t 2T t
(Fr® f)t)=>2

© J-Y. Le Boudec and P. Thiran
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We can express arrival curves with min-
plus convolution

OArrival Curve property means forall 0 < s< ¢,
x(1) -x(s)< a(t-s)
<> x(1)< x(s)+ a(t-s)forall 0<s< ¢
<> x(t)<inf, { x(u) +o(t-u)}

> X< Xx®a

© J-Y. Le Boudec and P. Thiran
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Star-shaped, concave, convex functions

Ofe ¥

Ofis concave & vV O <u <1, f(ux+ (1-uly)> uf(x) +
(-w(y)

O is convex < -fis concave

O Fis star-shaped < AT)Vt< f(s)/s Vs <+t

O fis concave = fis star-shaped

O 7is star-shaped % fis concave

© J-Y. Le Boudec and P. Thiran
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Sub-additive function

O 7is sub-additive <& £ (1) + #(5) > f(1+s)
O fis concave with f(0) = 0 = fis star-shaped
O Fis sub-additive X £is star-shaped

O 7,g are sub-additive and pass through the origin
(f(0)=9g(0) = 0) = F® gis sub-additive

© J-Y. Le Boudec and P. Thiran
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Examples
bits
bit uT,‘t (1-)
its
Ye.6(t)
- 4k
slope r 3k
b /P 2k
k
time T-7 2T-7 3T-74T-7T  time
Y IS CONCave ur . is star-shaped ?
sub-additive ?
© J-Y. Le Boudec and P. Thiran
30
Examples
bits
bits bits
3r(1) Br, ()
Slope (rate) R
delay T time  Jatency T time
3y is convex Br 1 iS convex
© J-Y. Le Boudec and P. Thiran

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA
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Examples

bits B r(1)+K’ bits Br r(1)+K"

T time T time

Bar + K is star-shaped ? By + K" is star-shaped ?
Sub-additive ? Sub-additive ?

© J-Y. Le Boudec and P. Thiran

Some properties of min-plus convolution

O(F®g)eF
O ® is associative
0O ® is commutative
O Neutral element: §,: F®8,= f
(8,(1)=0fort=0and §,(t) = o for t>0)
O ® is distributive with respect to A
O® isisotone: f< f and 9<g'= F® g< F® g’
O Functions passing through the origin (f(0) = g(0) = 0):
f®g<frg
O Star-shaped (concave) functions passing through the origin:
f®g=17frg
O Convex piecewise linear functions: ¥® gis the convex
Fiecewise linear function obtained by putting end-to-end all
|

near pieces of f and g, sorted by increasing slopes
© J-Y. Le Boudec and P. Thiran
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Example: rate latency function

3+(1) A(t)=Rt Br, 7(t)
(029 =
Slope (rate) R
Rate R P
delay T latency T
81 is convex Aq is convex Br, T is convex
(delay function) (delay function) (rate-latency function)

© J-Y. Le Boudec and P. Thiran
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£ Example 1 (using rules)

R f®g

(K+3,®%) @A,

K+ ((6,91) ®2,)

K+ (6,90, ®1A.))

K+ 6,90 AN))
T =K+ (6,92,)

9(1_) K Br,T

~
1 =h
VoLl
+ R
o o+
S
Q%
>
bv)

n n

g = A. concave
with g(0) = 0 (f®g)(t)

t t

© J-Y. Le Boudec and P. Thiran T
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Sub-additive closure

Of=inf {8, £f®F O F® £.}
O 7is sub-additive with f(0) = O
O fis sub-additive with f(0)= 0 & F=f & F= F® F

Of<g=f<g
OFrg=F®g
OFunctions passing through the origin (f(0) = g(0) = 0):
f®g=-1®g
© J-Y. Le Boudec and P. Thiran
Examples
bits (Br.7(1)+K) bits
2K’
/ R
K’
K -
T 2T  time T 2T  time
© J-Y. Le Boudec and P. Thiran

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA
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Sub-additivity and arrival curves

OWhat is a(1)?

O « can be replaced by its sub-additive closure ¢.

O From now on: we will always take sub-additive arrival
curves passing through the origin.

bits
a(t) — (1)

4k

3k — /_ /_

2k

k /_

T 2T 3T 47 T 2T 3T 47

© J-Y. Le Boudec and P. Thiran
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Minimal arrival curve

O If the only available information on a flow is obtained
from measurements, i.e if we only know R, how can we
compute its minimal arrival curve o ?

O The answer uses min-plus deconvolution

|l ||l|| ||| I—w.li.lJ

h HH“ | "'[|IH]|L~....

o 50 100 150 200 20 350 00

© J-Y. Le Boudec and P. Thiran
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Min-plus deconvolution @

ODefinition
(F@ ) (1)=sup, { A(t+) - 9(1)}

(f 2 9(®

9(t

(O

© J-Y. Le Boudec and P. Thiran
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Some properties of min-plus deconvolution
O(F< g) # Fin general
O(fd f)eF
O(F D £) is sub-additive with (f & £) (0) = O
O(FfDg)dh=FD(g® h)
ODuality with® : fPg< he F<g®h

© J-Y. Le Boudec and P. Thiran

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA
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Minimal arrival curve
O The minimal arrival curve of flowRis « =R 7 R.
OProof:
e It is an arrival curve because
R(1) - R(s)= R((t-5)*s) - R(5)
< sup, { R((*-5)+u) - R()} = (RD R) (-5)
e If o' is another arrival curve for flow R, then R< R® o’
S RDR<L o' sothat a<a.
© J-Y. Le Boudec and P. Thiran
42
Example
OMPEG files, 25 frames/sec
J:h#th%ﬁ%ﬁﬁ$wﬂymﬁﬂﬁwﬂg& | tﬂ]t“"'” .wt*||-[HI]|f
2 VANt
P e 5« Bt
i R R -
é o — _ o o
© J-Y. Le Boudec and P. Thiran
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Two key Concepts
Arrival and Service Curves

OInternet integrated services use the concepts of
arrival curve and service curves

/

L_.E < =11 W

© J-Y. Le Boudec and P. Thiran

44

Contents

0. What is Network Calculus
1. Arrival curves

2. Service curves, backlog, delay bounds
Minimal vs strict service curves
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Adaptive service curves
Guaranteed Rate Servers

3. Playback delay for pre-recorded video

© J-Y. Le Boudec and P. Thiran
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Minimal service Curve

OSystem S offers a (minimal) service curve 3 to a flow
iff for all #there exists some ssuch that

(1) - x(5) = p (t-5)

—— -

X Y
é y(t)
/ ﬁ x(s)

© J-Y. Le Boudec and P. Thiran t

B(1)

46

Strict service Curve

O Minimal service curve B : for all #there exists some s such that
1) -x(5) = (1-s)

O Strict service curve B3 : during any backlogged period [s,t], y(7) -
ns) z B (1-s)

—— -

© J-Y. Le Boudec and P. Thiran
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The constant rate server has (strict) !
service curve B(t)=ct

buffer ct

s t 0
Proof: take s = beginning of busy period:
y(1) - y(s) = ¢ (t-s) and y(5) = x(5)
> Y1) -x(s) =c(t-s)

© J-Y. Le Boudec and P. Thiran
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The guaranteed-delay node has
(minimal) service curve 5+

3+ (1)

f

seconds o T
Function &

© J-Y. Le Boudec and P. Thiran
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We can express service curves with min-
plus convolution
OService Curve guarantee means there exists some

O<s<ti yt)-x(5) = p(t-s)
& y(t)> x(5)+ B(t-s)for some 0 < s<

@ y(t)zinf, { x(w) +B(t-v)}
S y>2x®p

© J-Y. Le Boudec and P. Thiran
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Backlog and (virtual) delay

O Flow x is constrained by arrival curve «
O System S offers a (minimal) service curve £ to this flow
O Backlog at time t is x(7)- y(7)

O Virtual delay d(t) at time tis a(#)=inf{ >0 | x(1)< (7 + )}

—— -

bits bits
+
) §7V_(7‘) x0T y(t)
12 567 1 555

time t time t

© J-Y. Le Boudec and P. Thiran
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Non preemptive priority node -
High priority traffic

x (1) .—' y ()

O Pick any t, let s be the beginning of the busy period before t for
traffic. With possible delay due to a LP packet that arrived
just before s, of max size |,
YH(T) = Yu(S) 2 C(1-8) = o and yp(s) = x(s)
= YH(T) - XH(S) 2 C(T'S) - Imax
O Now, yu(t) = X(s) = yu(1) - yu(s) 2 0
= YH(T) - XH(S) 2 [C(T_S) - lmax ]+
O Service curve for HP traffic is

© J-Y. Le Boudec and P. Thiran

Non preemptive priority node &
Low priority traffic

; Rate C

x (1) .4’ y (1)

_

O Assume o, is an arrival curve for HP traffic.
O Let s’ be the beginning of the busy period of the server before t.
yL(t) - yu(s) = C(t-s') = (yu(t) - yu(s))
and y,(s") = xy(s) and y, (s') = x.(s")
=y (1) - () = y (1) - y () = C(+-5") - (Yu(1) - xp(s))
> C(+-5") = (Xu(1) = x4(s)) = C(t-5") = o (+ - 8")
O Now, y (1) - x,(s) = y (1) - y.(s) >0
=y (1) - x.(s") > [C(t-5) - o (T - SHT
O Service curve for LP traffic is S(1) = [Ct - oy (1)]
OIf then S = Bc b/

© J-Y. Le Boudec and P. Thiran
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The standard model for an
Internet router

Orate-latency service curve By ¢

bits

seconds

© J-Y. Le Boudec and P. Thiran
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Three fundamental bounds

If flow has arrival curve o and node offers service curve p then
O backlog < sup (a(s) -B(s)) = (o @ B)O) = v(a., B)

Odelay <inf{s>0: (o d B)-s)<0}=h(a, B)

O Output flow y is constrained by arrival curve "= o @

© J-Y. Le Boudec and P. Thiran
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Tight Bound on backlog

O Flow x is constrained by arrival curve «
O System S offers a (minimal) service curve £ to this flow
O Backlog at time tis x(7) -

O Backlog < sup (a(s) -B(s)) = (o @ B)O) = v(a., B)

© J-Y. Le Boudec and P. Thiran
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Tight Bound on delay

O Flow x is constrained by arrival curve «

O System S offers a (minimal) service curve £ to this flow

O Virtual delay d(t) at time tis d(#)= inf{ >0 | x(7)< }
Odelay <inf{s>0: (a0 D B)-5)<0}=h(a, B)

h(a,

© J-Y. Le Boudec and P. Thiran
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Arrival Curve of output flow

O Flow x is constrained by arrival curve «
O System S offers a (minimal) service curve £ to this flow
O Output flow y is constrained by arrival curve o'z o @ S

—— -

O Proof: x(1)< y(1) and y(5)> inf, (x(u)- S (5-u))
= (1) - 1(5)< x(1) - inf, (x(W)- B (5-u)
= sup, {x(t) - x(u)- pp (5-u)}
<sup,{ a(t-v)- p (s-u)}
=sup, { a(t-s+v)- p (v)}
= (0@ p)(1-s)

© J-Y. Le Boudec and P. Thiran
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The composition theorem

O Theorem: the concatenation of two network elements each
offering service curve B; offers the service curve p; ® B,

© J-Y. Le Boudec and P. Thiran
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Y®

Example

Otandem of routers

T1

© J-Y. Le Boudec and P. Thiran
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(0

(0

© J-Y. Le Boudec and P. Thiran

Pay Bursts Only Once

D, +D,<(2b+rT)/R+ T+ T,

b, b
B, B,
D
—|B®B,

D<b/R+ T +T,

end to end delay bound is less

60

© Jean-Yves Le Boudec, Patrick Thiran EPFL/LCA



Network Calculus

61

Greedy shaper

Shaper

R(D) — O x(D)
D |

G

Definition of Greedy shaper

Oforces output to be constrained by arrival curve o
x(1)- x(s) < o(t-s)

Ostores data in a buffer if needed

OHence the shaper maximises x(7)such that

x(1)< R(t)
x(1)< (x® o) (1)

© J-Y. Le Boudec and P. Thiran
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Output of a 6reedy shaper

Shaper
R(E) — x(t
Q) o ; (®
OIf ois sub-additive and o(0) =0, x(1t) = (R® o) (1)
OProof:
® x = R® ois a solution because
xX=R® c< R since o(0)=0
X=R®c=R®(0®c)=(RR®c)Qc=-Xx® o
e If x’is another solution then x’< Rand x < x’' ® .
Combining the two and using isotonicity of ®:
X'<X ®c<RR®o=X

© J-Y. Le Boudec and P. Thiran
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Greedy shaper = linear min-plus filter
OStandard convolution in (R, x, +) (LTI filter)
y(t) = (o *x)(t) = | o(t-u) x(u) du
+MT+
x(t) o(t) T y(t)

OMin-plus convolution in (R, +, A) is linear (A = min)

y(t)=(c® x) (t)=inf, { o(t-u) + x(u)}

x [:>__* Yy

shaper ©

© J-Y. Le Boudec and P. Thiran
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The service curve of a Greedy shaper
is its shaping curve
Shaper

x(t) —] . y(t)
S

G

OIf ois sub-additive and o(0) =0, y(t) = (x® o) (1).
OThe service curve of a shaper is thus o

© J-Y. Le Boudec and P. Thiran
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Shaping cannot be undone by shaping

Shaper

R(D) m x(D)
/T

G

O Suppose that R(t) is constrained by arrival curve o :R<R® «.
OThenx=R®c<(R®a)® c=R® (a¢® )< R® a since o(0) = 0.
O Therefore shaping keeps arrival constraints.

O In fact, the output flow has ¢ ® oas arrival curve

© J-Y. Le Boudec and P. Thiran
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Re-shaping is for free
end-to-end
service curve

®
o Shaper /% [%

17— B — .—I—' P —— B ®c®p,

|—'B1 B, ——

O %uppose that R(t) is consTrZiZnoéd by arrival curve a
O Backlog for first system = v(a, 8,® f,) = (a DB, ® B, I)0)
O Backlog for second system with intfermediate shaper =
W(a, f®c®B) = (0@ ® c®B))0) = (0 B(c® f ®LI0)
=((a@ )@ (B ®BIO)
O Since o < oand a is sub-additive with «(0) =0,
(@D )(t) = sup fa(t+u) - o(u)} < sup fo(t+u) - a(u)} =(@Da)(t) = a(1)
O Therefore v(a, f,05Q8,) = (a @B,® L. )0) =v(a, p,® p,)
O Same reasoning for delays: h(«, 5,9c®4) = h(a, B,® p,)

© J-Y. Le Boudec and P. Thiran
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Handling variable size packets

OThe shaper presented before is for constant size
packets or ideal fluid systems

OReal life systems are modelled by adding a packetizer
transforms fluid input into packets of size Iy, I,, |5, ...

I, 1, L

constant rate server

greedy shaper o(t)=ct
+ packetizer

T, T, T,
OPacketizer adds some distortion

© J-Y. Le Boudec and P. Thiran
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Goal of Service Curve and GR node
definitions

Odefine an abstract node model
Oindependent of a specific type of scheduler

Oapplies to real routers, which are not a single
scheduler, but a complex interconnection of delay and
scheduling elements

Oapplies to nodes that are not work-conserving

© J-Y. Le Boudec and P. Thiran
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Adaptive service Curve

OMinimal service curve 3 : for all #there exists some s

such that v(t)= p (t-s) + x(s)
OStrict service curve (3 : during any backlogged period

[s.t], /(1) = B (1-5) + (5)
O Adaptive service curve B : for all tand all s<¥,

(1) 2{ B (+-5) + y(s)} ninf ., - AB(F-0) + x(u)}
(in fact: adaptive guarantee (5', B)
(1) 2{ p'(t-s) + y(s)} ninf, -, - AB(F-1) + x(U)}

OStrict = Adaptive = Minimal

© J-Y. Le Boudec and P. Thiran

The constant rate server has (adaptive) "
service curve B(t)=ct

buffer ct

s t 0
Proof: ct is a minimal service curve

© J-Y. Le Boudec and P. Thiran
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The guaranteed-delay node has
(adaptive) service curve &

Y
37 (1)

seconds 0 T

Proof: Pick any s < t.
OIf t-s < T then trivially y(1) > §(*-s) + y(s)
OIf t-s> Ttheninf, -, A8 (1-u)+ x(u} = x(+-T)< (1)

© J-Y. Le Boudec and P. Thiran
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The adaptive service curve of a
Greedy shaper is (6 Z o, 0)

Shaper

x(t) —] . y(t)
S

G

O Max-plus deconvolution:(£@ g) (*) = inf { f(t+u) - g(u)}
O 1) = (x® o) (1) = infy ,= {o(t-u) + x(u}
zinfoeo ,< {o(t-w) + x(U} A inf,_ - {o(t-u) + x(U}
>infy- ,<{o(s-u) +inf {o(t-s+v)-o(v)} + x(u}
ninf._ , - do(t-u) + x(up
>{infy_ ,<s{o(5-u) + x(u} + (c @S )(1-5)}
ninf, -, do(t-u) + x(uh
={ (1) +(c o )(t-s)} ninf - ,= {c(t-u) + x(u)}

© J-Y. Le Boudec and P. Thiran
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Guaranteed Rate node

OAn alternative definition to service curve for
FIFO

e for rate-latency service curves only

ODefinition (Goyal, Lam, Vin; Chang):
a hode is GR(r,e) if
D(n) <F(n)+e
F(n) = max{A(n), F(n-1)} + I(n)/r
D(n) : departure time for packet n
A(n) : arrival time
F(n) : virtual finish time, F(0) =0
I(n) : length in bits for packet n

© J-Y. Le Boudec and P. Thiran
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F(n) = max{A(n), F(n-1)} A+ I(n)/r

I(n)/r
— I
F(n-1) D(n-1) A(n) F(n) D(n)
I(n)/r
[¥ I
A(n) F(n-1) D(n-1) F(n) D(n)

© J-Y. Le Boudec and P. Thiran
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GR is equivalent to rate-latency
service curve -- for FIFO per flow

OGR(r,e) is equivalent to
D(n) < max, . [A(K) + (I(k) + ... + [(n))/r] + e
e max-plus analog to service curve
OTheorem (equivalence for FIFO per flow nodes):

® a GR node is a service curve element with rate-latency service
curve (re) followed by a packetizer

e conversely, consider a node which is FIFO per flow and
serves entire packets. If it has the rate-latency service
curve (R,T) then it is GR(R,T).

OFIFO per flow is true in IntServ context

© J-Y. Le Boudec and P. Thiran
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Properties of GR nodes

(FIFO per flow or not)
Odelay bound = h(a, B)
Drax= € + sup[a(t)/r-1]

bits r

// Dimax= € + sup(a(t)/r-1)
e time

for FIFO per flow nodes = delay at service curve element
(packetizer does not add per-packet delay)

O backlog bound = v(a., B) + |,
Bmax: SUP[OC(T)'RU"T)*.] * lmax

© J-Y. Le Boudec and P. Thiran
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Modelling a node with GR

Oqueue with rate C: R=C, T=0

Opriority queue with rate C: R=C, T=|_,./C
Oelement with bounded delay d: R = o, T=d
Oand combine these elements

© J-Y. Le Boudec and P. Thiran
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Contents

0. What is Network Calculus ?
1. Arrival curves
2. Service curves, backlog, delay bounds
3. Playback delay for pre-recorded video

© J-Y. Le Boudec and P. Thiran
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Network delivery of Pre-
recorded video

Video Network Video
server Smoother display

(t+d) (® ) — (t-D)
R R CHEE TS @ty I

c

O Le Boudec and Verscheure ToN 2000, Thiran, Le Boudec and Worm, Infocom
2001

ONetwork + end-station offers a service curve S to flow
x(1) (intserv or diffserv + real time model of end-
station)

OSmoother delivers a flow x(7) conforming to an arrival
curve o. Can look-ahead on the server (max d time units)

OVideo stream is stored in the client buffer 8and read
after a playback delay O.

© J-Y. Le Boudec and P. Thiran
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Network delivery of Pre-
recorded video

Video Network Video
server Smoother display

(t+d) ® M — (t-D)
e el CHE TS @ty
o

OWhat are the minimal values of D and B, given d, o
and g3 ?

OWhat is the scheduling (smoothing) strategy at the
sender side that achieves these minimal values ?

OTs this optimal smoothing strategy unique ?

ODoes a large look-ahead delay @ help in reducing D
and B?

© J-Y. Le Boudec and P. Thiran
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Putting the Problem into Equations
Video

Video
server Network -
Vv Smoother display

E ja(t+d). | 36 y(t) E: a(t—D)
c

OSmoothed flow x(7)such that
X(1) < 5(1) (ie, x(t) = 0if t<0)
x(1)< a(t+d) (look-ahead up to d'time units)
x(t)< (x® o) (1) (smoothing)
OOutput flow y(*)such that
v(t) > a(t-D) (no buffer underflow)
v(t) <a(t-D)+ B  (no buffer overflow)
Oy (1) = [I(x)(1)is not known but (x® p)(1) < y(1)< x(1)

© J-Y. Le Boudec and P. Thiran
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The Min-Plus Residuation Theorem

O From Baccelli et al, "Synchronization and Linearity”
OTheorem: Assume that operator I is upper-semi-
continuous. The problem
<a(t)a
has one maximum solution, given by
= (a)?)
O(Definition of closure of an operator)
I (x)= inf {x, I1(x), [Tol1(x), IolloIl(x),...}
OTT is upper-semi continuous if inf,(IT(x;)) = II (inf(x;))
e frue in practice for all our systems
O The greedy shaper output is an example of use

© J-Y. Le Boudec and P. Thiran
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Massaging the Equations to use

Residuation

OOutput flow y(*)such that
(x® p)(1) > a (+-D) (no buffer underflow)
x(t) <a(t-D)+B  (no buffer overflow)

or equivalently using deconvolution operator @

x(1) > (a2 p)1-D) =sup, { a(t-D+u)- P(u)}
x(t) <a(t-0) + B

OTherefore find smallest D, B s.t. maximal solution of

x(1) < { 8(t) A a(t+d) A (a(t-D) + B) } A {(x@ o) (1) }

verifies

x(1) = (a@ B)(1-D)

© J-Y. Le Boudec and P. Thiran
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Applying Residuation to our Problem

OOMaximal solution of
X(1) < { op(T) ~ a(t+d) A (a(t-D) + B)} n {(x® o) (1) )
is, with c sub-additive,
x(1) = a® Lo (t) A a(t+d) A (a(t-D) + B) }
=o(H)A{(c® a)t-D) + B} (c® a)(t+d)
CONeed to check that this solution x(7)> (a @ g )(1-D)
e o(t)=(a@ B)t-D)
-> D> h(a, f® o)
o (6®a)(t-D)+ B> (ad B)1-D)
-> B> v(a@a,pB®c)
o (c®a)t+d)=(a@ B)1-D)
> D+d>v(a@a,p® o)

© J-Y. Le Boudec and P. Thiran
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Bounds for D, B and d

OIn summary, we have shown that

e the set of admissible playback delays D, playback buffer B
and look-ahead limit d is

D> D, =h(ag ® c)
D+d> (D+d),,=h(aga,p® o)
B> B,,=v(@a@a,p®c)
e in particular, there is a minimum playback delay.
e if D, d, B satisfy the constraints above, a schedule is

possible;
else, there is no schedule that can guarantee correct

operation

© J-Y. Le Boudec and P. Thiran
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The formulae have a simple
graphical interpretation

(1) compute o ® B (2) compute the horizontal deviation

s bits B bits R Dmin = h((l, c® B)

° c®pB c®p

_ Z i time
4 >

(3) compute ad a
and the horizontal deviation

bits , bits
D+d)y,,= Ja,c®P)

c®p
[ / Bn=v(a @a,c®p)

© J-Y. Le Boudec and P. Thiran

(4) compute the vertical deviation
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Example: MPEG Trace
OMPEG files, 25 frames/sec, discretized in
packe’rs of 416 bytes
D
I ||| M ]
t Al e *"I | | f-l_kl\ ‘_‘{AIL\I"'*"'-"'-'-‘|‘,\|:--"-’- S Iy
,,,,,,,,,,,,,,,,,, w5 Mr
© J-Y. Le Boudec and P. Thiran - Dmm
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O Actual values of delays depend on the length of
the stream and the posmon of Iar'ges‘r burst, and
the ability to predict it
O Example: in Jurassic Park trace, — §reoco V
largest burst occurs between E 10000
frames 28000 - 29000 § oo 40000 frames
. | &2\~ 20000 frames
5. H | “ g 40000 frames
i = gf_' 20000 frames
8.
© J-Y. Le Boudec and P. Thiran N - T e (kBytesssad) " = w
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OActual values of delays depend on the length of
the stream, the position of largest burst, and the
ability to predict it

D

N 10 D.l D2 D.3 D.4 12F
E? . M-Iq\-].l..]‘. s | A 1 2

[.l ‘ LHU n|‘.|..=\| | |J|f' L 1&_\1 m H)L| J “ . max (D1,02,03,D4)

RN W ] P‘-‘t; Hl J‘\,t' W, 1 MR i
R B T e T A N max over 4 slices of
P — [ ame by : o 100 frames |
:’ 400 frames

’ ; po L 20 2‘.‘11 n 50 o0 : L L L o
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Example 3: Dual problem formulation

OFind smallest D, B and d s.t. the maximal solution of
x(1) < S(t) A R(H+d) A {R(H-D) + B} A (x® &) (1)

verifies
x(1) 2(R@ B)t-D).
CProperty of @: X <(x® o)<» (X o)< x

OFind smallest D, B and d s. t. the minimal solution of
x(t) 2 (R B)+-D)v (x dc) (1)

verifies
x(1) < S(t) A R(H+d) A (R(H-D) + B} .

© J-Y. Le Boudec and P. Thiran
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Max-Plus System Theory in Action

OFrom Baccelli et al, "Synchronization and Linearity”;
assume that I1 is isotone and lower-semi-continuous.
Theorem : the problem

x(1) < a(t)v I1(x)(1)

has one minimum solution, given by x,, (%)= T1(a)(t)
O(Definition of super-additive closure)
IT (x) = sup {x, [1(x), Tlol1(x), Tolloll(x),...}
OMinimal solution of
x(1)=(R@ B)1+-D)v (xoc) (1)
is, with o sub-additive with c(0) = O,
Xul(1) = (RD (B® o))(1-D)

© J-Y. Le Boudec and P. Thiran
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Scheduling for D,;,. d., and B,

Xpin(1) = (RD (SR c))(1-D)  (Le Boudec, Verscheure 2000)
+ Other metrics (Feng, Rexford 99):
(Salehi, Zhang, Kurose, Towsley 98)

+ ON$OFF (Zhang, Hui 97)
....... R t "'.:: ___,'I Xmin(t)
Bmin
R(t+d.. )  agg—l -~
_________ ) e
4, D, :

min min

© J-Y. Le Boudec and P. Thiran
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Conclusion

ONetwork Calculus is a set of tools and theories for the
deterministic analysis of communication networks

OA new system theory, which applies min-plus algebra to
communication networks

O Does not supersede stochastic queueing analysis, but
gives new tools for analysis of sample paths

O"Network calculus”, J-Y Le Boudec and P. Thiran,
Lecture Notes in Computer Sciences vol. 2050,
Springer Verlag, also available on-line at
http://1camww.epfl.ch
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